Last update: June 22, 2017

Deliberation in Planning and Acting

Part 3: Temporal Models

Automated Planning and Acting

Malik Ghallab, Dana Nau and Paolo Traverso

http://www.laas.fr/planning

Malik Ghallab LAAS/CNRS, University of ToulouseDana Nau University of MarylandPaolo Traverso FBK ICT IRST, Trento, Italy

Motivation

• Some success stories ...

Remote Agent Experiment (RAX)

- First AI control system to control a spacecraft without human supervision
 - Deep Space One, 1999
- Key component: RAX-PS planner/scheduler

IxTeT

- LAAS/CNRS, Toulouse, France
- early 1990s to early 2000s

T-ReX

Casper (NASA JPL)

• MBARI, around 2005-2010

• Common characteristic: explicit representation of time

Temporal Models

- Durations of actions
- Delayed effects and preconditions
 - > e.g., resources borrowed or consumed during an action
- Time constraints on goals
 - relative or absolute
- Exogenous events expected to occur in the future
 - > when?
- Maintenance actions:
 - maintain a property (more general than just changing a value)
 - > e.g., track a moving target, keep a spring latch in position
- Concurrent actions
 - interacting effects, joint effects
- Delayed commitment
 - instantiation at acting time

Timelines

- Up to now, we've used a "state-oriented view"
 - Sequence of states s_0, s_1, s_2
 - Instantaneous actions transform each state into the next one
 - No overlapping actions
- Switch to a "time-oriented view"
 - Sequence of integer time points
 - *t* = 1, 2, 3, ...
 - Scale is arbitrary
 - seconds, milliseconds, ...
 - ➢ For each state variable, a *timeline*
 - Values during different time intervals
 - Reflect actions and events to occur at those times
 - State at time t = {values of the state-variable at time t}

Where We're Going

- Constrain values of state variables
 - at time points, over time intervals
- Somewhat like *plan-space planning* (partial-order causal link planning)
 - But with time durations, task refinement
- Can have a complete plan in which time points are constrained, but not completely fixed
 - Provide flexibility at acting time

Outline

✓ Introduction

- Representation
 - > Timelines, separation constraints, causal support, actions, tasks, chronicles
- Temporal planning
- Speeding up TemPlan
- Controllability
- Acting with executable primitives
- Summary

Timeline

• A pair (T,C)

partially specifies evolution of a state variable

- T: temporal assertions
 - change:
 [t₁, t₂] loc(r1) : (loc1, l)
 [t₃, t₄] loc(r1) : (l, loc2)
 - > persistence:
 - $[t_2, t_3] \log(r1) = l$
- *C* : constraints
 - *time* constraints:
 - $\begin{array}{l} t_1 < t_2 < t_3 < t_4 \\ 0 < t_4 t_3 \leq c + 2 \end{array}$

where c is a constant

> object constraints: l ≠ loc1, l ≠ loc2

- Union of several timelines
 - $\succ (\mathcal{T}, \mathcal{C}) = (\mathcal{T}_1, \mathcal{C}_1) \cup \ldots \cup (\mathcal{T}_n, \mathcal{C}_n)$

•
$$T = T_1 \cup \ldots \cup T_n$$

•
$$C = C_1 \cup \ldots \cup C_n$$

Consistency

- Let (T, C) be a timeline or union of several timelines
- Let (T', C') be a ground instance of (T, C)
 - (T', C') is *consistent* if T' satisfies C'
 and every state variable has at most one value at a time
- (T, C) is *consistent* if it has at least one consistent ground instance

Security

- (T, C) timeline or union of a set of timelines
 - \succ (*T*,*C*) is secure if
 - it's consistent (i.e., at least one consistent ground instance)
 - every ground instance $(\mathcal{T}', \mathcal{C}')$ that satisfies \mathcal{C}' is consistent

Security

• Can make it secure by adding a *separation constraint*

Like a *resolver* in plan-space planning

>
$$t_2 < t_3$$

> $t_4 < t_1$
> $t_2 = t_3, l = loc1$

 \succ $r \neq$ r1

Causal support

• α says that at time t_1 , r1 is at location loc1

> How did it get there?

Like an *open goal* in plan-space planning

- Causal support for α
 - > something that establishes loc(r1) = loc1 at time t_1
 - Another temporal assertion
 - $[t_0, t_1] \log(r1) = \log 1$
 - $[t_0, t_1] \log(r1):(l, \log 1)$
 - Or information telling us α is supported *a priori*

14

Like a *resolver* in plan-space planning

Causal support

- α_3 is causally supported by α_2
- α_2 is causally supported by α_1
- No causal support for α₁
- (T, C) is *causally supported* if every assertion has a causal support
 - > Three ways to add causal support for an assertion

In plan-space planning, like adding a resolver to a partial plan

Establishing causal support

- Add $[t_3, t_4] \log(r1) = \log 2$
 - Supported by the first temporal assertion
 - Supports the second one

Establishing causal support

• Add
$$t_2 = t_3$$
, $l = loc2$

► time

Establishing causal support

- Add [*t*₂,*t*₃] loc(r1):(loc1,loc3)
- Caveat:
 - Can't just do this directly
 - > It needs to be part of an *action*

- *Action* or *primitive task*:
 - > a triple (*head*, T, C)
 - $head = name(arg_1, arg_2, ..., arg_n)$
 - (T,C) is the union of one or more timelines
- An action will always have two additional arguments
 - > starting time t_s
 - > ending time t_e

- enter(r, d, w)
 - r enters d from an adjacent
 waypoint w

enter(r,d,w)

assertions:

```
[t_s,t_e] \log(r): (w,d)
[t_s,t_e] \operatorname{occupant}(d): (\operatorname{empty},r)
constraints:
```

```
t_e \ge t_s + 3
adjacent(d, w)
```

- loc(*r*) changes to *d*
- dock *d* becomes occupied by *r*

- Things that need to be supported
- At time t_s
 - \succ r at waypoint w
 - \succ *d* empty

- leave(*r*,*d*,*w*)
 - robot r goes from dock d
 to adjacent waypoint w

leave(r,d,w)

assertions:

```
[t_s,t_e] \log(r): (d,w)
[t_s,t_e] \operatorname{occupant}(d): (r,\operatorname{empty})
constraints:
```

```
t_e \ge t_s + 2
adjacent(d, w)
```

- loc(*r*) changes to *w*
- dock *d* becomes empty

- Need causal support at time t_s
 - \succ r at dock d
 - \succ *d* occupied by *r*

- navigate(*r*,*w*,*x*)
 - robot r goes from waypoint w to connected waypoint x

navigate(r,w,x)

assertions:

 $[t_s, t_e] \log(r)$: (w,x) constraints:

 $t_s < t_e$ connected(*d*, *w*)

• loc(*r*) changes to *x*

- Need causal support at time t_s
 - \succ r at waypoint w

Task and Method

connected(w,w')

Chronicles

- Chronicle $\phi = (A, S_T, T, C)$
 - > A: temporally qualified tasks
 - includes primitive tasks (actions)
 - > S_T : *a priori* supported assertions
 - > *T*: temporally qualified assertions
 - > C: constraints
- ϕ can include
 - Current state and future predicted events
 - Tasks to be performed
 - Assertions and constraints to be satisfied
- Can represent
 - a planning problem
 - partial or full solution

```
tasks:

\begin{bmatrix} t_s, t_e \end{bmatrix} \text{ move}(r1, d2) \\ \begin{bmatrix} t_s, t_e \end{bmatrix} \text{ move}(r2, d1) \\ \text{supported:} \\ \begin{bmatrix} t_s \end{bmatrix} \text{ loc}(r1) = d1 \\ \begin{bmatrix} t_s \end{bmatrix} \text{ loc}(r2) = d2 \\ \text{constraints:} \\ t_s < t_e \\ \text{ adjacent}(d1, w1), \\ \text{ adjacent}(d2, w2), \\ \text{ connected}(w1, w2) \\ \end{bmatrix}
```


Outline

✓ Introduction

- ✓ Representation
- Temporal planning
 - > Algorithm, example, heuristics
- Speeding up TemPlan
- Controllability
- Acting with executable primitives
- Summary

Planning Algorithm

- Input is a chronicle
- Repeatedly
 - > select a flaw
 - arbitrary choice
 - choose a resolver
 - nondeterministic choice
- Three kinds of flaws
 - 1. non-refined task

 $\begin{aligned} \mathsf{TemPlan}(\phi, \Sigma) \\ Flaws \leftarrow \text{ set of flaws of } \phi \\ \text{ if } Flaws = \varnothing \text{ then return } \phi \\ \text{ arbitrarily select } f \in Flaws \\ Resolvers \leftarrow \text{ set of resolvers of } f \\ \text{ if } Resolvers = \varnothing \text{ then return failure} \\ \text{ nondeterministically choose } \rho \in Resolvers \\ \phi \leftarrow \mathsf{Transform}(\phi, \rho) \\ \mathsf{Templan}(\phi, \Sigma) \end{aligned}$

Like a task in SeRPE

Like an open goal in plan-space planning

Like a threat in plan-space planning

- Resolver: apply refinement method or action definition
- 2. unsupported assertion
 - Resolver: add causal support
- 3. possibly-conflicting assertions
 - Resolver: separation constraint

Initial Chronicle for a Planning Problem

- Flaws:
 - two non-refined tasks
- Next, refine them
 - apply the move method

 ϕ_0 : tasks: $[t_s, t_e] \mod(r1, d2)$ $[t_s, t_e] \mod(r2, d1)$ supported: $[t_s] \log(r1) = d1$ $[t_s] \log(r2) = d2$ constraints: $t_s < t_e$ adjacent(d1,w1), adjacent(d2,w2), connected(w1,w2)

The *move* method

After refining move

 ϕ_1 : tasks: $[t_s, t_1]$ leave(r1,d1,w1) • Flaws: $[t_2,t_3]$ navigate(r1,w1,w2) 6 non-refined tasks (actions) $[t_4, t_e]$ enter(r1,d2,w2) $[t_s, t_5]$ leave(r2,d2,w2) Next, refine the red ones $[t_6, t_7]$ navigate(r2,w2,w1) • apply action definition $[t_8, t_e]$ enter(r2,d1,w1) supported: $[t_s] \log(r1) = d1$ $[t_s] \log(r^2) = d^2$ constraints: $t_s < t_1 \le t_2 < t_3 \le t_4 < t_e$ r1: navigate $t_{s} < t_{5} \le t_{6} < t_{7} \le t_{8} < t_{\rho}$ adjacent(d1,w1), adjacent(d2,w2), enter(d2) leave(d1) connected(w1,w2) t_e t_{s} $t_1 t_2$ $t_3 t_4$ navigate r2: r2 State at $t_{\rm s}$ w2 enter(d1) leave(d2) r1 w1 $t_7 t_8$ t_e $t_{5} t_{6}$

Deliberation in Planning and Acting

After refining *leave*

• Flaws:	ϕ_2 : tasks: $[t_2, t_3]$ navigate(r1,w1,w2)
4 unrefined tasks	$[t_4, t_e]$ enter(r1,d2,w2)
4 unsupported assertions	$[t_6, t_7]$ navigate(r2,w2,w1) $[t_8, t_e]$ enter(r2,d1,w1)
 Next, refine the green and blue ones apply action definitions 	assertions: $[t_s, t_1] loc(r1): (d1, w1)$ $[t_s, t_1] occupant(d1): (r1, empty)$ $[t_s, t_5] loc(r2): (d2, w2)$ $[t_s, t_5] occupant(d2): (r2, empty)$
r1. novigato	supported: $[t_s] loc(r1)=d1$ $[t_s] loc(r2)=d2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	constraints: $t_s < t_1 \le t_2 < t_3 \le t_4 < t_e$ $t_s < t_5 \le t_6 < t_7 \le t_8 < t_e$ adjacent(d1,w1), adjacent(d2,w2), connected(w1,w2)
r2: <i>def. of</i> leave(d2) enter(d1)	State at t_s w2 r2 d2 w
t_s t_5 t_6 t_7 t_8 t_e Deliberation in Planning and Acting	w1 0 0d1 00

After refining *navigate* and *enter*

- Flaws:
 - 10 unsupported assertions
 - 2 possible conflicts
- Next, use the black ones to support the red ones

r1: def. of def. of def. of leave(d1) enter(d2) navigate t_{s} $t_3 t_4$ $t_1 t_2$ t_e r2: def. of def. of enter(d1) def. of leave(d2) navigate $t_{5} t_{6}$ $t_7 t_8$ t_e **Deliberation in Planning and Acting**

 ϕ_3 : assertions: $[t_s, t_1] \log(r1)$: (d1,w1) $[t_s, t_1]$ occupant(d1): (r1,empty) $[t_2, t_3]$ loc(r1): (w1,w2) $[t_4, t_e] loc(r1): (w2, d2)$ $[t_4, t_e]$ occupant(d2): (empty,r1) $[t_{s},t_{5}] loc(r2): (d2,w2)$ $[t_s, t_5]$ occupant(d2): (r2,empty) $[t_6, t_7]$ loc(r2): (w2,w1) $[t_8, t_e] \log(r2)$: (w1,d1) $[t_8, t_e]$ occupant(d1): (empty, r1) supported: $[t_s] loc(r1)=d1$ $[t_s] loc(r2)=d2$ constraints: $t_s + 2 \le t_1 \le t_2 \le t_3 \le t_4 \le t_e - 3$ $t_s + 2 \le t_5 \le t_6 < t_7 \le t_8 \le t_e - 3$ adjacent(d1,w1), adjacent(d2,w2), connected(w1,w2) r2 State at $t_{\rm s}$ w2 ∇ 0 42 00 r1 w1

After supporting *leave*

• Flaws:	ϕ_4 : assertions:	$[t_2,t_3] loc(r1): (w1,w2)$
6 unsupported assertions		$[t_4, t_e] loc(r1): (w2, d2)$
2 possible conflicts		$[t_4, t_e]$ occupant(d2): (empty,r1) $[t_6, t_7]$ loc(r2): (w2,w1) $[t_8, t_7]$ loc(r2): (w1.d1)
• Next, use the red ones to		$[t_8, t_e]$ occupant(d1): (empty, r1)
support the green ones	supported:	$[t_s] \log(r1) = d1$
• constrain $t_1 = t_2$ and $t_5 = t_6$	11	$[t_s, t_1] \text{ loc}(r1): (d1, w1)$ $[t_s, t_1] \text{ occupant}(d1): (r1, empty)$ $[t_1] \text{ loc}(r2)=d2$
r1: <i>def. of def. of</i> leave(d1) <i>def. of</i> enter(d2)		$[t_s, t_5] \log(r^2) = d^2$ $[t_s, t_5] \log(r^2): (d^2, w^2)$ $[t_s, t_5] \operatorname{occupant}(d^2): (r^2, empty)$
t_s t_1 t_2 t_3 t_4 t_e	constraints:	$t_s + 2 \le t_1 \le t_2 < t_3 \le t_4 \le t_e - 3$ $t_s + 2 \le t_5 \le t_6 < t_7 \le t_8 \le t_e - 3$ adjacent(d1,w1), adjacent(d2,w2), connected(w1,w2)
r2: <i>def. of</i> leave(d2) <i>def. of</i> navigate enter(d1)	State a	t t_s w ² d ² d ² d ²
t_s t_5 t_6 t_7 t_8 t_e Deliberation in Planning and Acting		wi o odi co

After supporting navigate

• Flaws:

- 4 unsupported assertions
- 2 possible conflicts
- Next, use the green ones to support the blue ones
 - constrain $t_3 = t_4$ and $t_7 = t_8$

 ϕ_5 : assertions: $[t_4, t_e] \operatorname{loc}(r1)$: (w2,d2) $[t_4, t_{\rho}]$ occupant(d2): (empty, r1) $[t_8, t_e] \log(r2)$: (w1,d1) $[t_8, t_e]$ occupant(d1): (empty, r1) supported: $[t_s] \log(r1) = d1$ $[t_s, t_1] \log(r1): (d1, w1)$ $[t_s, t_1]$ occupant(d1): (r1,empty) $[t_2, t_3]$ loc(r1): (w1,w2) $[t_s] \log(r^2) = d^2$ $[t_s, t_5] \log(r2)$: (d2, w2) $[t_s, t_5]$ occupant(d2): (r2,empty) $[t_6, t_7]$ loc(r2): (w2,w1) constraints: $t_s + 2 \le t_1 = t_2 < t_3 \le t_4 \le t_e - 3$ $t_s + 2 \le t_5 = t_6 < t_7 \le t_8 \le t_e - 3$ adjacent(d1,w1), adjacent(d2,w2), connected(w1,w2) r2 State at t_{s} w2 0 d2 00 ∇ r1 w1

After supporting enter

• Flaws: 2 possible conflicts ϕ_6 : supported: $[t_s] \log(r1) = d1$ $[t_{s},t_{1}] loc(r1): (d1,w1)$ if $t_3 < t_5$, r1 enters d2 before r2 has left $[t_s, t_1]$ occupant(d1): (r1, empty) occupied(d2)=r1,r2 $[t_1, t_3]$ loc(r1): (w1,w2) if $t_7 < t_1$, r2 enters d1 before r1 has left $[t_4, t_e] loc(r1): (w2, d2)$ $[t_4, t_{\rho}]$ occupant(d2): (empty, r1) occupied(d2)=r1,r2 $[t_s] loc(r2)=d2$ $[t_{s}, t_{5}] \log(r2)$: (d2, w2) • Next, add separation constraints $[t_s, t_5]$ occupant(d2): (r2,empty) > $t_1 < t_7$ and $t_5 < t_3$ $[t_5, t_7]$ loc(r2): (w2,w1) $[t_8, t_e] \log(r2)$: (w1,d1) r1: def. of def. of $[t_8, t_{\rho}]$ occupant(d1): (empty, r1) leave(d1) def. of enter(d2) navigate constraints: $t_s + 2 \le t_1 = t_2 < t_3 = t_4 \le t_e - 3$ $t_s + 2 \le t_5 = t_6 < t_7 = t_8 \le t_e - 3$ $t_{\rm s}$ $t_1 = t_2$ $t_3 = t_4$ t_o adjacent(d1,w1), adjacent(d2,w2), connected(w1,w2) r2: def. of def. of r2 leave(d2) def. of enter(d1) State at t_{s} w2 navigate w1 $t_{\rm s}$ $t_5 = t_6$ $t_7 = t_8$ t_{ρ}

After adding separation constraints

Outline

- ✓ Introduction
- ✓ Representation
- ✓ Temporal planning
- Speeding up TemPlan
 - Node selection heuristics, detection of constraint violations
- Controllability
- Acting with executable primitives
- Summary

Node Selection Heuristics

- Ideas similar to those in constraint-satisfaction algorithms
- Flaw selection, resolver selection
 - Select the flaw with the smallest number of resolvers
 - Choose the resolver that rules out the fewest resolvers for the other flaws

 $\begin{aligned} \mathsf{TemPlan}(\phi, \Sigma) \\ Flaws \leftarrow \text{set of flaws of } \phi \\ \text{if } Flaws = \varnothing \text{ then return } \phi \\ \text{arbitrarily select } f \in Flaws \\ Resolvers \leftarrow \text{set of resolvers of } f \\ \text{if } Resolvers = \varnothing \text{ then return failure} \\ \text{nondeterministically choose } \rho \in Resolvers \\ \phi \leftarrow \mathsf{Transform}(\phi, \rho) \\ \mathsf{Templan}(\phi, \Sigma) \end{aligned}$

- More advanced heuristics
 - EUROPA2 [Bernardini & Smith, 2008]
 - FAPE [Bit-Monnot, 2016]

Detecting Constraint Violations

- Each time TemPlan applies a resolver, it modifies (*T*,*C*)
 - Some resolvers will make (*T*,*C*) inconsistent
 - No solution in this part of the search space
 - Detect inconsistency => prune this part of the search space
 - Don't detect it => waste time looking for a solution
- How to detect inconsistency early?

Detecting Constraint Violations

• When TemPlan changes *C*, check consistency

- > If C is inconsistent, then
 - No solutions below this node

• Prune it

 $\begin{aligned} \mathsf{TemPlan}(\phi, \Sigma) \\ Flaws \leftarrow \text{set of flaws of } \phi \\ \text{if } Flaws = \varnothing \text{ then return } \phi \\ \text{arbitrarily select } f \in Flaws \\ Resolvers \leftarrow \text{set of resolvers of } f \\ \text{if } Resolvers = \varnothing \text{ then return failure} \\ \text{nondeterministically choose } \rho \in Resolvers \\ \phi \leftarrow \mathsf{Transform}(\phi, \rho) \\ \mathsf{Templan}(\phi, \Sigma) \end{aligned}$

if ϕ is inconsistent then return failure

Consistency of *C*

- C contains two kinds of constraints
 - Object constraints
 - $loc(r) \neq l_2$, $l \in \{loc3, loc4\}$, $r = r1, o \neq o'$
 - Temporal constraints
 - $t_1 < t_3$, a < t, t < t', $a \le t' t \le b$
- Assume object constraints are independent of temporal constraints and vice versa
 - > exclude things like t < speed(r1)</pre>
- Two separate subproblems
 - (1) are the object constraints consistent?
 - (2) are the temporal constraints consistent?
 - > C is consistent iff both are consistent

Object Constraints

- Consistency of object constraints
 - Constraint-satisfaction problem (CSP) NP-hard
- Can write an algorithm that's *complete* but runs in exponential time
 - If there's an inconsistency, always finds it
 - Might do a lot of pruning, but spend lots of time at each node
- Instead, use a constraint-satisfaction technique that's incomplete but takes *polynomial* time
 - arc consistency, path consistency
 - Detect some inconsistencies but not others
- Consequence
 - Don't prune as much of the search space
 - Affects efficiency but not correctness

Time Constraints

To represent time constraints:

- Simple Temporal Networks (STNs)
 - Networks of constraints on time points
- Can modify TemPlan to
 - \succ Create initial network from the constraints in C
 - Check consistency in polynomial time
 - *O*(*n*³)
 - > Every time *C* changes
 - update the network
 - check consistency

update temporal network if it's inconsistent then return failure $t_{1}, 2l \qquad [1, 7] \qquad [1, 7] \qquad [1, 2] \qquad [1, 2] \qquad [4, 5] \qquad [4, 5] \qquad [5]$

TemPlan (ϕ, Σ) $Flaws \leftarrow set of flaws of \phi$ if $Flaws = \emptyset$ then return ϕ arbitrarily select $f \in Flaws$ $Resolvers \leftarrow set of resolvers of f$ if $Resolvers = \emptyset$ then return failure nondeterministically choose $\rho \in Resolvers$ $\phi \leftarrow Transform(\phi, \rho)$ Templan (ϕ, Σ)

Time Constraints

- *Simple Temporal Network* (STN):
- a pair $(\mathcal{V}, \mathcal{E})$, where
 - $\mathcal{V} = \{ a \text{ set of temporal variables } \{t_1, \dots, t_n \}$
 - $\mathcal{E} \subseteq \mathcal{V}^2$ is a set of arcs
- Each arc (t_i, t_j) is labeled with an interval $r_{ij} = [a, b]$
 - Represents constraint $a \le t_j t_i \le b$
 - Equivalently, $-b \le t_i t_j \le -a$
- Representing unary constraints: dummy variable $t_0 = 0$
 - → Arc $r_{0i} = (t_0, t_i)$ labeled with [a, b] represents $a \le t_i 0 \le b$
- Solution to an STN: integer value for each t_i , all constraints satisfied
- *Consistent* STN: has a solution
- *Minimal* STN: for every arc (t_i, t_j) with label [a, b], for every $t \in [a, b]$
 - > there's at least one solution such that $t_j t_i = t$

Operations on STNs

• Intersection:

 $t_j - t_i \in r_{ij} = [a_{ij}, b_{ij}]$ $t_j - t_i \in r'_{ij} = [a'_{ij}, b'_{ij}]$ Infer $t_j - t_i \in r_{ij} \cap r'_{ij} = [\max(a_{ij}, a'_{ij}), \min(b_{ij}, b'_{ij})]$

• Composition:

$$t_k - t_i \subseteq r_{ik} = [a_{ik}, b_{ik}]$$

$$t_j - t_k \subseteq r_{kj} = [a_{kj}, b_{kj}]$$

nfer $t_j - t_i \subseteq r_{ik} \bullet r_{kj} = [a_{ik} + a_{kj}, b_{ik} + b_{kj}]$

• Consistency checking:

$$r_{ik}, r_{kj}, r_{ij}$$
 are consistent if $r_{ij} \cap (r_{ik} \bullet r_{kj}) \neq \emptyset$

Two Examples

- STN (V, E), where
 - ▶ $\mathcal{V} = \{t_1, t_2, t_3\}$
 - > $\mathcal{E} = \{r_{12} = [1,2], r_{23} = [3,4], r_{13} = [2,3]\}$
- Composition:
 - > $r'_{13} = r_{12} \cdot r_{23} = [4,6]$
- Can't satisfy both r_{13} and r'_{13}
 - > $r_{13} \cap r'_{13} = [2,3] \cap [4,6] = ∅$
- (V, \mathcal{E}) is inconsistent

• STN (V, E), where

>
$$\mathcal{V} = \{t_1, t_2, t_3\}$$

- > $\mathcal{E} = \{r_{12} = [1,2], r_{23} = [3,4], r_{13} = [2,5]\}$
- As before, $r'_{13} = [4,6]$
- This time, (V, \mathcal{E}) is consistent
 - > $r_{13} \cap r'_{13} = [4,5]$
- To get minimal network, change r₁₃ ← [4,5]

Operations on STNs

- PC (*Path Consistency*) algorithm:
 Consistency checking on all triples
 n constraints => n³ triples => time O(n³)
- Detects inconsistent networks
 - > $r_{ij} = [a_{ij}, b_{ij}]$ empty => inconsistent
- Makes STN minimal
 - > Shrinks each r_{ij} to exclude values that aren't in any solution
- Can modify it to make it *incremental*
 - > Input: a consistent, minimal STN, and a new constraint r'_{ii}
 - > Incorporate r'_{ij} in time $O(n^2)$
- Whenever the network becomes inconsistent, prune this part of the search space

Deliberation in Planning and Acting

```
PC(V, \mathcal{E}):
for 1 \le k \le n do
for 1 \le i < j \le n, i \ne k, j \ne k do
r_{ij} \leftarrow r_{ij} \cap [r_{ik} \bullet r_{kj}]
if r_{ij} = \emptyset then
return inconsistent
```

Outline

- ✓ Introduction
- ✓ Representation
- ✓ Temporal planning
- ✓ Speeding up TemPlan
- Controllability
- Acting with executable primitives
- Summary

- Suppose TemPlan gives you a temporal network and you want to perform it
 - Constraints on time points
 - Need to reason about these in order to decide when to start each action

- Solid lines: duration constraints
 - Robot will do bring&move, will take 30 to 50 time units
 - Crane will do uncover, will take 5 to 10 time units
- Dashed line: synchronization constraint
 - Don't want either the crane or robot to wait long
 - > At most 5 seconds between the two ending times
- Objective
 - Choose time points that will satisfy all the constraints

- Suppose we use PC
 - > get a minimal and consistent network
- There *exist* time points that satisfy all the constraints
- Would work if we could choose all four time points
 - > But we can't choose t_2 and t_4
- t_1 and t_3 are *controllable*
 - Actor can control when each action starts
- t_2 and t_4 are *contingent*
 - can't control how long the actions take
 - random variables that are known to satisfy the duration constraints
 - $t_2 \in [t_1 + 30, t_1 + 50]$
 - $t_4 \in [t_3+5, t_3+10]$

PC(
$$V, \mathcal{E}$$
):
for $1 \le k \le n$ do
for $1 \le i < j \le n$, $i \ne k$, $j \ne k$ do
 $r_{ij} \leftarrow r_{ij} \cap [r_{ik} \bullet r_{kj}]$
if $r_{ij} = \emptyset$ then
return inconsistent

- Can't guarantee that all of the constraints will be satisfied
- Start bring&move at time $t_1 = 0$
- Suppose the durations are
 - bring&move 30, uncover 10

>
$$t_2 = 0 + 30 = 30$$

> $t_4 = t_3 + 10$
> $t_4 - t_2 = t_2 - 20$

- Constraint $-5 \le t_4 t_2 \le 5$ $\rightarrow -5 \le t_3 - 20 \le 5$
- Need to start uncover at $t_3 \le 25$
 - > If $t_3 > 25$ then $t_4 t_2 > 5$

- But if we start uncover at $t_3 \le 25$, neither action has finished yet
 - We don't yet know how long they'll take
- Might instead get this:
 - bring&move 50, uncover 5

>
$$t_2 = 0 + 50 = 50$$

►
$$t_4 = t_3 + 5 \le 25 + 5 = 30$$

► $t_4 - t_2 \le 30 - 50 = -20$

STNUs

- *STNU (Simple Temporal Network with Uncertainty):*
 - > A 4-tuple $(\mathcal{V}, \mathcal{V}, \mathcal{E}, \mathcal{E})$
 - $V = \{controllable \text{ time points}\} = \{starting times of actions\}$
 - $\tilde{V} = \{contingent \text{ time points}\} = \{ending \text{ times of actions}\}$
 - $\mathcal{E} = \{ controllable \text{ constraints} \}, \tilde{\mathcal{E}} = \{ contingent \text{ constraints} \}$
- Controllable and contingent constraints:
 - Synchronization between two starting times: controllable
 - Duration of an action: contingent
 - Synchronization between ending points of two actions: contingent
 - > Synchronization between end of one action, start of another:
 - Controllable if the new action starts after the old one ends
 - Contingent if the new action starts before the old one ends
- Want a way for the actor to choose time points in V (starting times) that guarantee that the constraints are satisfied

Dynamic Execution

- $(V, \tilde{V}, \mathcal{E}, \tilde{\mathcal{E}})$ is *strongly controllable* if the actor can choose values for V such that for every choice of values for \tilde{V} , success will occur
 - > Actor can choose the values for \mathcal{V} offline
 - > The right choice will work regardless of \tilde{V}
- $(V, \tilde{V}, \mathcal{E}, \tilde{E})$ is *weakly controllable* if the actor can choose values for V such that for at least one choice of values for \tilde{V} , success will occur
 - > Actor can choose the values for \mathcal{V} only if the actor knows in advance what the values of $\tilde{\mathcal{V}}$ will be
- Want *dynamic controllability*
 - > Choose values for V online by observing what has happened so far
 - Need a strategy for how to choose the values

Dynamic Execution

For t = 0, 1, 2, ...

- 1. Actor chooses time points $V_t \subseteq V$ that can be triggered at time *t* without violating any *synchronization* constraints
 - actions that the actor chooses to start
- 2. Simultaneously, environment chooses time points $\tilde{V}_t \subseteq \tilde{V}$ that can be triggered at time *t* without violating any *duration* constraints
 - actions that the environment chooses to finish
- 3. They trigger the time points they've chosen, and remove them from V and \tilde{V}
 - history $h = \text{record of all that has happened} = \{V_t, \tilde{V}_t\}$ for i = 1, ..., t
- 4. Failure if any of the constraints are violated

- $r_{ij} = [l,u]$ is violated if t_i and t_j have values (step 3) and $t_j - t_i \notin [l,u]$

- 5. Success if no constraints violated, and $\mathcal{V} = \tilde{\mathcal{V}} = \varnothing$
- *Dynamic execution strategy* $\sigma_A(h)$ for actor, $\sigma_E(h)$ for environment
 - > What to choose next, given h
- $(V, \tilde{V}, \mathcal{E}, \tilde{E})$ is *dynamically controllable* if there *exists* a σ_A that will guarantee success for *every* σ_E

Example

• Instead of a single bring&move task, two separate bring and move tasks

Dynamic Controllability Checking

- How to check whether an STNU is dynamically controllable
 - Extension of consistency checking
- For a chronicle $\phi = (A, S\tau, T, C)$
 - \triangleright Temporal constraints in *C* correspond to an STNU
- TemPlan can keep the STNU dynamically controllable
 - use the incremental version of PC
- If PC reduces the size of a contingent constraint r_{ij}
 - > Then the STNU isn't dynamically controllable
 - \rightarrow prune this path in the search space
 - > Otherwise, further test of dynamic controllability
 - extension of Path Consistency, additional constraint propagation rules

Outline

- ✓ Introduction
- ✓ Representation
- ✓ Temporal planning
- ✓ Speeding up TemPlan
- ✓ Controllability
- Acting with executable primitives
 - Acting with atemporal refinement
 - Dispatching
 - > Observation actions
- Summary

Atemporal Refinement of Primitive Actions

- TemPlan's actions may correspond to tasks for Rae to refine using refinement methods not in TemPlan
- TemPlan action (descriptive model)

```
\begin{array}{l} \mathsf{leave}(r,d,w) \\ \text{assertions: } [t_s,t_e] \mathsf{loc}(r) : (d,w) \\ [t_s,t_e] \mathsf{occupant}(d) : (r,\mathsf{empty}) \\ \text{constraints: } t_e \leq t_s + \delta_1 \\ \text{adjacent}(d,w) \end{array}
```

• Rae refinement method (operational model)

```
\begin{array}{l} \mathsf{m-leave}(r,d,w,e) \\ \mathrm{task:} \ \mathsf{leave}(r,d,w) \\ \mathrm{pre:} \ \mathsf{loc}(r){=}d, \mathsf{adjacent}(d,w), \mathsf{exit}(e,d,w) \\ \mathrm{body:} \ \mathrm{until} \ \mathsf{empty}(e) \ \mathsf{wait}(1) \\ & \mathsf{goto}(r,e) \end{array}
```

Atemporal Refinement of Primitive Actions

- TemPlan's actions may correspond to tasks for Rae to refine using refinement methods not in TemPlan
- TemPlan action (descriptive model)

```
unstack(k,c,p)
assertions: ...
constraints: ...
```

• Rae refinement method (operational model)

```
 \begin{split} \text{m-unstack}(k,c,p) \\ \text{task: unstack}(k,c,p) \\ \text{pre: } \text{pos}(c) = p, \text{top}(p) = c, \text{grip}(k) = \text{empty} \\ \text{attached}(k,d), \text{attached}(p,d) \\ \text{body: locate-grasp-position}(k,c,p) \\ \text{move-to-grasp-position}(k,c,p) \\ \text{grasp}(k,c,p) \\ \text{until firm-grasp}(k,c,p) \text{ ensure-grasp}(k,c,p) \\ \text{lift-vertically}(k,c,p) \\ \text{move-to-neutral-position}(k,c,p) \end{split}
```

Discussion

• Pros

- Simple online refinement with Rae
- > Avoids breaking down uncertainty of contingent duration
- > Can be augmented with temporal monitoring functions in Rae
- > E.g., watchdogs, methods with duration preferences
- Cons
 - Does not handle temporal requirements at the command level, e.g., concurrency synchronization

- Can augment Rae to include temporal reasoning
 - Call it eRae
 - > One essential component: a *dispatching* function

Acting With Temporal Models

- Dispatching procedure: a dynamic execution strategy
 - > Controls when to start each action
 - > Given a dynamically controllable plan with executable primitives, triggers corresponding commands from online observations
- Example
 - robot r2 needs to leave dock d2 before robot r1 can enter d2
 - crane k needs to uncover c then put it onto r1

r2

Dispatching

- Let (V, V, E, E) be a controllable
 STNU that's *grounded*
- Different from a grounded expression in logic
 - At least one time point t is instantiated
- This bounds each time point twithin an interval $[l_t, u_t]$

Controllable time point *t* in the future:

- *t* is *alive* if current time $now \in [l_t, u_t]$
- *t* is *enabled* if
 - ➤ it's alive

$\mathsf{Dispatch}(\mathcal{V}\!,\!\tilde{\mathcal{V}}\!,\!\mathcal{E}\!,\!\tilde{\mathcal{E}}\,)$

- initialize the network
- while there are time points in V that haven't yet been triggered, do
 - > update *now*
 - update the time points in V that were triggered since the last iteration
 - ➤ enabled ← {t ∈ V | t hasn't yet been triggered, and $l_t \le now \le u_t$ }
 - ▶ for every $t \in enabled$ such that $now = u_t$

• trigger t

- arbitrarily choose other time points in enabled, and trigger them
- in the network, propagate values of triggered timepoints
 - This changes $[l_v, u_t]$ for each future timepoint *t*
- > for every precedence constraint t' < t, t' has occurred
- > for every wait constraint $\langle t_e, \alpha \rangle$, t_e has occurred or α has expired

Example

- trigger t_1 , observe leave finish
- enable and trigger t_2 , this enables t_3 , t_4
- trigger t₃ (start leave(r2,d2)) soon
 enough to allow enter(r1,d2) at time t₅
- trigger t₄ (start unstack(k,c')) soon enough to allow stack(k,c') at time t₆
- rest of plan is linear: choose each t_i after the previous action ends

 t_3 leave(r2,d2)

navigate(r1)

unstack(k,c',p)

 l_{5}

enter(r1,d2)

stack(k,c',q)

$\mathsf{Dispatch}(\mathcal{V}, \mathcal{V}, \mathcal{E}, \mathcal{E})$

- initialize the network
- while there are time points in V that haven't yet been triggered, do
 - > update *now*
 - update the time points in V that were triggered since the last iteration
 - > enabled $\leftarrow \{t \in \mathcal{V} | t \text{ hasn't yet been} \\ \text{triggered, and } l_t \leq now \leq u_t\}$
 - ▶ for every $t \in enabled$ such that $now = u_t$
 - trigger t

unstack(k,c)

- arbitrarily choose other time points in enabled, and trigger them
- in the network, propagate values of triggered timepoints

 t_{g}

• This changes $[l_v, u_t]$ for each future timepoint *t*

putdown(k,c,r1)

1₀

leave(r1,d2)

 t_{2}

 t_1

leave(r1,d1)

Example

- trigger t_1 at time 0
- wait and observe *t*
- trigger *t*' at any time from *t* to *t*+5
- trigger t_3 at time t' + 10

>
$$t_2 \in [t'+15, t'+20]$$

>
$$t_4 \in [t_3 + 5, t_3 + 10]$$

$$= [t' + 15, t' + 20]$$

- so $t_4 t_3 \in [-5, 5]$
- So all the constraints are satisfied

$$\begin{array}{c} t_{1} & [15, 25] & t & [0, 5] & t' & [15, 20] & t_{2} \\ \hline \text{bring} & \text{move} & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

$\mathsf{Dispatch}(\mathcal{V}\!,\!\!\tilde{\mathcal{V}}\!,\!\!\mathcal{E}\!,\!\!\tilde{\mathcal{E}}\,)$

- initialize the network
- while there are time points in V that haven't yet been triggered, do
 - > update *now*
 - update the time points in V that were triggered since the last iteration
 - > enabled $\leftarrow \{t \in \mathcal{V} | t \text{ hasn't yet been} \\ \text{triggered, and } l_t \leq now \leq u_t\}$
 - ▶ for every $t \in enabled$ such that $now = u_t$
 - trigger t
 - arbitrarily choose other time points in enabled, and trigger them
 - in the network, propagate values of triggered timepoints
 - This changes $[l_v, u_t]$ for each future timepoint *t*

Deadline Failures

- Suppose something makes it impossible to start an action on time
- Do one of the following:
 - stop the delayed action, and look for new plan
 - It the delayed action finish; try to repair the plan by resolving violated constraints at the STNU propagation level
 - e.g., accommodate a delay in navigate by delaying the whole plan
 - > let the delayed action finish; try to repair the plan some other way

Partial Observability

• Tacit assumption: all occurrences of contingent events are observable

- > Observation needed for dynamic controllability
- > In general not all events are observable
- POSTNU (Partially Observable STNU)

• Dynamically controllable?

Observation Actions

Dynamic Controllability

- A POSTNU is dynamically controllable if
 - there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past *visible* points
- Observable \neq visible
- Observable means it will be known when observed
- It can be temporarily hidden

Outline

- ✓ Introduction
- ✓ Representation
- ✓ Temporal planning
- ✓ Speeding up TemPlan
- ✓ Controllability
- ✓ Acting with executable primitives

• Summary

Summary

- Timelines
 - Temporal assertions (change, persistence), constraints
 - Conflicts, consistency, security, causal support
 - Consistency, security, causal support
- Chronicle: timelines + supported/unsupported info + tasks
- Actions represented by chronicles; preconditions \Leftrightarrow causal support
- Planning problems
 - three kinds of flaws and their resolvers:
 - tasks, causal support, security
 - partial plans, solution plans
- Planning: TemPlan
 - Like PSP but with tasks, temporal assertions, temporal constraints
 - Managing constraints: like CSPs
 - Temporal constraints: STNs, PC algorithm (path consistency)
- Acting: dynamic controllability, STNUs, RAE and eRAE, dispatching

Relation to the Book

- Ghallab, Nau, and Traverso (2016).
 Automated Planning and Acting.
 Cambridge University Press
- Free downloads:
 - Lecture slides, final manuscript
 - http://www.laas.fr/planning
- Table of Contents
 - 1. Introduction
 - 2. Deterministic Models
 - 3. Refinement Methods
 - 4. Temporal Models
 - 5. Nondeterministic Models
 - 6. Probabilistic Models
 - 7. Other Deliberation Functions

Any questions?

Automated Planning and Acting

Malik Ghallab, Dana Nau and Paolo Traverso