Last update: June 22, 2017

Deliberation in Planning and Acting

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

Part 3: Temporal Models

http://www.laas.fr/planning

Malik Ghallab LAAS/CNRS, University of Toulouse
Dana Nau University of Maryland
Paolo Traverso FBK ICT IRST, Trento, Italy

Deliberation in Planning and Acting 1

Motivation

® Some success stories ...

Deliberation in Planning and Acting

Remote Agent Experiment (RAX)

e First Al control system to control a spacecraft without human supervision
» Deep Space One, 1999
e Key component: RAX-PS planner/scheduler

-

Executive

Deliberation in Planning and Acting

IXTeT

e LAAS/CNRS,
Toulouse, France

e carly 1990s to
early 2000s

'00:00:10:01

visibility window

[120,120] o
) s communication
Communicate g goal e
L1 Bz el t5l l
............. te [2,2] @
f17 Mg t9 10 f1g toplie., t13 t4 w~1location
OO O RO eal¥ A
MovePTU Take- = .. " MovePTU Move™ .7

-
-~
-
.Q
..
-
-
-
-
-
-
..
-~

Casper (NASA JPL)

e MBARI, around 2005-2010 e NASA JPL, ongoing

e Common characteristic:
explicit representation of time

Deliberation in Planning and Acting

Temporal Models

® Durations of actions
e Declayed effects and preconditions
> e.g., resources borrowed or consumed during an action
e Time constraints on goals
> relative or absolute
e Exogenous events expected to occur in the future
» when?
e Maintenance actions:
» maintain a property (more general than just changing a value)
> e.g., track a moving target, keep a spring latch in position
e Concurrent actions
> 1Interacting effects, joint effects
® Delayed commitment

> Instantiation at acting time

Deliberation in Planning and Acting

Timelines

e Up to now, we’ve used a “state-oriented view”
e Sequence of states s, 5, 5,
e [nstantaneous actions transform each state into the next one

e No overlapping actions
t o+l

e Switch to a “time-oriented view”
> Sequence of integer time points
e =1,2,3,...
> Scale 1s arbitrary

e seconds, milliseconds, ... | ‘ ‘

> For each state variable, a timeline

state variables

e Values during different time intervals
e Reflect actions and events to occur at those times

> State at time ¢ = {values of the state-variable at time ¢}

Deliberation in Planning and Acting

Where We’re Going

t

t2 visibility window P 3
[120,120] R communication

b Communicate 3 :goal: -
A7t t1z ts

-~
L)
..
‘e
-
L)
..
el
-
‘e
e
-
..
-
-~
..

Move te@ [(2,2] @
tO tOIS. ty7 t1g to t1p L1g9 t 0 ------- tha tig location
> 15 @ Ve WiVe WVe W -l Ve Wi - g WiVey goal ¥t

[300,300]

.
..

MovePTU Take- **.... MovePTU Move
image
..... image .
Tven,. goal
e Planning is constraint-based ‘qg—"q4

» Constrain values of state variables
e at time points, over time intervals

e Somewhat like plan-space planning
(partial-order causal link planning)

> But with time durations, task refinement

e Can have a complete plan in which time points are constrained, but not
completely fixed

» Provide flexibility at acting time

Deliberation in Planning and Acting

Outline

v
e® Representation
» Timelines, separation constraints, causal support, actions, tasks, chronicles
e Temporal planning
® Speeding up TemPlan
e Controllability
e Acting with executable primitives

® Summary

Deliberation in Planning and Acting

e A pair (T,C)

Timeline

> partially specifies evolution of a state variable

o T: temporal assertions
> change:
[#,, 2] loc(rl) : (locl, /)
[#5, 24] loc(rl) : (/, loc2)
> persistence:
[1,, ;] loc(rl) =1
e C: constraints
> time constraints:

L<t,<t,<tl
0<t,—t,<c+2

where ¢ 1s a constant

> object constraints:
[#locl, [#loc2

Deliberation in Planning and Acting

loc(r1)
“ locl /
e ; Persistence
' A Change
: > time
h L 1 ty

® Union of several timelines

> (T;C):(Tlacl) J.. U (T;vcn)

e T=T U..UT,
e« C=C,U..UC,

10

Consistency

e Let (T,C) be a timeline or union of several timelines

e Let (T',C') be a ground instance of (T,C)
> (T',C) is consistent if T satisfies C’

and every state variable has at most one value at a time

e (T,C) is consistent if it has at least one consistent ground instance

e Consistent:
> T=1{[t.t,] loc(r)=locl,
[#3,24] loc(7):(locl,loc2)}
» C={<6,<6;<t,}

e Inconsistent:
> T=1{[t.t,] loc(r)=locl,
[#3,24] loc(7):([,locl)}
> C={t<t;<t,, [#locl}

Deliberation in Planning and Acting

loc(r)
locl locl,

' 5 > fime
2 Ly 13

loc(7)

1 locl locl

: — : > fime
2 I I Iy

11

Security

e (T,C) — timeline or union of a set of timelines
> (T,C) is secure if
e it’s consistent (i.e., at least one consistent ground instance)

e every ground instance (T, C') that satisfies C' is consistent

loc(r
® Secure: ()

> T={[t,t,] loc(rl)=locl,
[£3,84] loc(r):(1, ')}
» C={n<6<5;<t,}

> time
e Consistent but not secure;:
> T={[t,,t,] loc(r)=locl, :
[£3,84] loc(r1):(1,0")} f
> C={1<t, <1}
: > time
2 I3 1 Iy

Deliberation in Planning and Acting 12

Security

e Consistent but not secure: loc(r)
> T={[t,t,] loc(r)=locl,
[£5,24] loc(r1):(L1"}

> C={t,<t,, 5<t,}

locl

Like a threat in
plan-space planning

e Can make it secure by adding a separation constraint
> r-rl
> L<t
> 1<t
> t,=1;, 1 =locl
> t,=1t,!] =locl

Deliberation in Planning and Acting

Like a resolver in
plan-space planning

13

Causal support

loc(rl) loc(rl)
EIoclE |0Mc2
e Lect a be one of these: ; ; ; ;
> [t,t,] loc(rl)=locl
> [t,,t,] loc(rl):(locl, loc2) : 5 L
’ > lime >
0 fg / L lime

® « says that at time ¢#,, rl 1s at location loc1
» How did 1t get there? Like an open goal in

plan-space planning

e Causal support for a
Like a resolver in

» something that establishes loc(rl)= loc1 at time ¢, .
plan-space planning

e Another temporal assertion
[#,,2,] loc(rl)=locl
[#0,2,] loc(r1):(/, locl)

e Or information telling us a is supported a priori

Deliberation in Planning and Acting

14

Causal support

e Timeline (T,C)
> T= {ay, 0,, 03} loc(rl)
e a, =[t,t,] loc(rl):(locl,/) |0§‘}w

* o, =[t,t] loc(rl)=/

Persistence

*loc2 Change

o o, = [ty 1] loc(rl):(,loc2) } o i
» C={t < <B;<1, ' I N . lime
[#locl, [# loc2} A L 4 Iy

® q, is causally supported by a,
* 0, is causally supported by a,

e No causal support for q,

e (T,C) is causally supported if every assertion has a causal support
> Three ways to add causal support for an assertion

In plan-space planning, like adding a resolver to a partial plan

Deliberation in Planning and Acting

15

Establishing causal support

(1) Add a persistence assertion loc(r1)

locl ,, :
Timeline (T, C) M Yy Persistence
T = {[t,.1,] loc(r1):(loc1,loc2), Change
[£5,2,] loc(rl):(loc2,loc3) }
_ : ; : . > 1]
C={t <t<t;<1,} t t, t 1, e
e Add [#,24] loc(rl)=loc2 5 Persistence
> Supported by the first Change
temporal assertion S
> Supports the second one 5 . time
g L, 1 t

Deliberation in Planning and Acting 16

Establishing causal support

(2) Add constraints
Timeline (T,C)
T= {[t,,5,] loc(r1):(locl,loc2),

[13,24] loc(r) =1 }
C={t <t), <1}

e Addt, =1#,/=loc2

Deliberation in Planning and Acting

loc(7)

> fime

loc(r)

t1

loc2 10C2

14

t1

=13

14

> lime

17

Establishing causal support

(3) Add a change assertion loc(r1)

locl |.0C4

Timeline (T, C)

T={[#,1,] loc(r1) = loc1, loc3
[£5,¢,] loc(rl):(loc3,loc4)} 5 i s

C={H<t,<<t)} t LB 7 time

e Add [t,,4] loc(rl):(locl,loc3) loc(r)

locl I.OC4

® Caveat:
» Can’t just do this directly

> It needs to be part of an action

Deliberation in Planning and Acting

t 12 13 14 timer

18

Actions

® Action or primitive task:
> a triple (head,T,C)
e head = name(arg,, arg,, ..., arg,)

e (T,C) is the union of one or more timelines
® An action will always have two additional arguments

> starting time ¢,

» ending time ¢,

Deliberation in Planning and Acting

19

Actions

e enter(r,d,w) e Things that need to be supported
> renters d from an adjacent e At time ¢,
waypoint w > rat waypoint w
> d empty

enter(r,d,w)
assertions:
[£,.,] loc(r): (w,d)
[£,.¢,] occupant(d): (empty,r)
constraints:
t,>t+3
adjacent(d,w)

® loc(r) changes to d

e dock d becomes occupied by r

Deliberation in Planning and Acting 20

Actions

e leave(r,dw)

> robot 7 goes from dock d e Need causal support at time ¢,

to adjacent waypoint w > ratdock d
> d occupied by r
leave(r,d,w)
assertions:

[£..t,] loc(r): (d,w)
[£,.¢,] occupant(d): (r,empty)

constraints:
t,>t+2
adjacent(d,w) r) —
O,/ O doo /

® loc(r) changes to w

e dock d becomes empty

Deliberation in Planning and Acting 21

Actions

® navigate(r,w,x)

> robot r goes from waypoint w e Need causal support at time ¢,

to connected waypoint x > rat waypoint w

navigate(r,w,x)
assertions:
[£,.2,] loc(r): (w,x)
constraints:

ZLS < te
connected(d,w)

® loc(7) changes to x

Deliberation in Planning and Acting 22

Task and Method

e Task: move robot » to dock d —_— [tS,te]move(rd)
> [t,.t,] move(r,d) navigate
I
® Refinement method: leave : j enter

m-movel(r,d,d’ w,w")

task: move(r,d)

refinement:
[£,t,] leave(r,d',W")
[2,,2;] navigate(w',w)
[2,,2,] enter(r,d,w)

constraints:
t<t,t,<tyt,<ty, t;<t, 1,<t,
adjacent(d,w), adjacent(d’,w")
connected(w,w’)

Deliberation in Planning and Acting

\ 4

23

Chronicles

e Chronicle ¢ = (A,S T,C)
> A: temporally qualified tasks
e includes primitive tasks (actions)
> S+: a priori supported assertions
» T: temporally qualified assertions

> C: constraints

® ¢ can include
» Current state and future predicted events
» Tasks to be performed
> Assertions and constraints to be satisfied
e Can represent
e a planning problem

e partial or full solution

tasks:

[Z.,t,] move(rl,d2)

s27e

[¢,,¢,] move(r2,d1)

supported:

[¢,] loc(rl)=d1
[7,] loc(r2)=d2

constraints:
tS < te

adjacent(d1,wl),
adjacent(d2,w2),
connected(wl,w2)

w2 / Or2 Odzwé

wl Al

Odl()Oz

Deliberation in Planning and Acting

24

Outline

v
v
® Temporal planning
> Algorithm, example, heuristics
® Speeding up TemPlan
e Controllability
e Acting with executable primitives

® Summary

Deliberation in Planning and Acting

25

Planning Algorithm

TemPlan(¢, X)

e Input is a chronicle Flaws < set of flaws of ¢
if Flaws=< then return ¢
arbitrarily select f € Flaws
Resolvers < set of resolvers of f

e arbitrary choice if Resolvers=@ then return failure
> choose a resolver nondeterministically choose p € Resolvers
¢ < Transform(¢, p)
Templan(¢, X)

® Repeatedly
> select a flaw

e nondeterministic choice
® Three kinds of flaws
1. non-refined task Like a task in SeRPE
e Resolver: apply refinement method or action definition
2. unsupported assertion Like an open goal in plan-space planning
e Resolver: add causal support
3. possibly-conﬂicting assertions Like a threat in plan-space planning

e Resolver: separation constraint

Deliberation in Planning and Acting 26

Initial Chronicle for a Planning Problem

e Flaws:

> two non-refined tasks

e Next, refine them

e apply the move method

rl: |

%ﬁ'_'.'.'_'_'.'.'_'_'_'.'_'_'.'_'_'.'_'.'.'.'_'.'_'_'.'_'.'_'_'.'_'.'.'_'_'.'n'_iféf.vf.é'_'.'.'t'.'_'o'f_'.'_'_é.i'_'_'.'.2'_'.'_'_'.'_'_'.'_'_'.'.'.'_'_'.'.'_'_'_'_'.'_'.'.'_'_'.'f.'_'_'f_'_'f_'j

: A
r2:

%ﬁIfﬁfﬁifZIﬁﬁﬁfiﬁﬁﬁIﬁiﬁIﬁIrﬁﬁ?éQﬁéﬁi£§ﬁfélﬁiIﬁIﬁIﬁZﬁIﬁﬁﬂiﬁiﬁﬁﬁiﬁﬁﬁﬁﬁfﬁé

; .

Deliberation in Planning and Acting

P,: tasks:
supported:

constraints:

State at 7,

,t,] move(rl,d2)
»1,] move(r2,dl)
t,] loc(rl)=d1

[¢,] loc(r2)=d2

tS < te
adjacent(d1,wl),
adjacent(d2,w2),
connected(wl,w2)

tS
t

[
|
|

rl |/
wl //O odlo()%

w2 / Or2 ddzwé

27

The move method

e Task: move robot » to dock d —_— [tS,te]move(rd)
> [t,.t,] move(r,d) navigate
I
® Refinement method: leave : j enter

m-movel(r,d,d’ w,w")

task: move(r,d)

refinement:
[£,t,] leave(r,d',W")
[2,,2;] navigate(w',w)
[2,,2,] enter(r,d,w)

constraints:
t<t,t,<tyt,<ty, t;<t, 1,<t,
adjacent(d,w), adjacent(d’,w")
connected(w,w’)

Deliberation in Planning and Acting

\ 4

28

After refining move

e Flaws: ¢,: tasks: [7.7,] leave(rl,d1,wl)
navigate(rl,wl,w2)

t2>t3]
t4,t,] enter(rl,d2,w2)

|
» 6 non-refined tasks (actions) %
[7,.t5] leave(r2,d2,w2)
(46
|
|

S

te,t;] navigate(r2,w2,wl)
te, t,] enter(r2,d1,wl)

t,] loc(rl)=d1
[¢,] loc(r2)=d2

constraints: ¢/, <?t, <t,<t;<t,<¢{,

® Next, refine the red ones

e apply action definition

supported:

rl: navigate t<ts<t <t <ty<t,
leave(dl) : . enter(d2) adjacent(d1,wl), adjacent(d2,w2),
I L connected(wl,w2)
L I b I3 1y l, '

r2: navigate -
i I— 2|
Hleave(d2) i enter(dl) State at w2 / O Odzwé

\ 4

i | B i i
t t 1, t 1 L, il //O 0T 0

Deliberation in Planning and Acting

After refining leave

e Flaws:
» 4 unrefined tasks

> 4 unsupported assertions

e Next, refine the green and blue ones

e apply action definitions

@,: tasks: |
|
|
[

assertions: |
|
|
|
|

supported:

rl: def of ‘navigate
leave(d1) enter(d2)
L I b I3 1y l, '
2 def of navigate
leave(d2) enter(dl)
2 Is 1g Z t,

Deliberation in Planning and Acting

t,,t;] navigate(rl,wl,w2)
t,,t,] enter(rl,d2,w2)
te,t;] navigate(r2,w2,w1l)

ts, t,] enter(r2,d1,wl)
t,t] loc(rl): (d1,wl)

t,t;] occupant(dl): (rl,empty)
t,ts] loc(r2): (d2,w2)

t,ts] occupant(d2): (r2,empty)
t,] loc(rl)=d1

[¢,] loc(r2)=d2

constraints: ¢ <t <t,<t;<t,<t,

t<ts <t <t;<ty<t,
adjacent(d1,wl), adjacent(d2,w2),
connected(w1,w2)

w2 / Or2 Odzwz

rl |/
wl //O odlooz

State at ¢,

30

After refining navigate and enter

e Flaws: ¢5: assertions:
» 10 unsupported assertions

» 2 possible conflicts

e® Next, use the black ones to
support the red ones

rl: def- of s def of supported:
leave(dl) def. of i enter(d2)
— Enavigateg

\ 4

t A t t, t

§ € adjacent(dl,wl), adjacent(d2,w2),
; connected(w1,w?2)
r2: def Of a’ef Of |
: ’ ¢ : r2
leave(d2) | def. of i enter(dl) State at ¢, w2 / © 6707
_: inavigatei _
: P P N rl |/
t, ts 1, t tg L, wi o 0100

constraints:

1] loc(rl): (d1,wl)

11] occupant(dl): (r1,empty)
th,t3] loc(rl): (wl,w2)

t4,t,] loc(rl): (w2,d2)

t4,t,] occupant(d2): (empty,rl)
t,ts] loc(r2): (d2,w2)

t,ts] occupant(d2): (r2,empty)
tet7] loc(r2): (w2,wl)

te,t,] loc(r2): (wl,d1)

te,t,] occupant(dl): (empty,rl)
t] loc(rl)=d1

[¢,] loc(r2)=d2
tH2<t;<t,<t;<t,<t,—3
(A2 <t <t <t;<ty<t,—3

2
2
|
|
[
|
[
|
|
[
[

Deliberation in Planning and Acting

31

After supporting leave

e Flaws: @4 assertions: |[7,,7;] loc(rl): (wl,w2)
> 6 unsupported assertions F4’ e} loc(r): (szﬂgzz)
: : t4,¢,] occupant(d2): (empty,rl
> 2 possible conflicts [£c.4-] loc(r2): (w2, w1)
[#s,2,] loc(r2): (wl,dl)
e Next, use the red ones to [25,2,] occupant(dl): (empty,rl)
support the green ones supported: [z,] loc(rl)=d1
e constraint, =t, and t5 = f, [2,,1,] loc(rl): (d1,wl)
[7,,¢,] occupant(dl): (r1,empty)
. [¢,] loc(r2)=d2
'L def. of o def. of [£,.t5] loc(r2): (d2,w2)
leave(dl) . def. of enter(d2) [7,,¢5] occupant(d2): (r2,empty)
| Enawgate; constraints: ¢ +2<¢ <t,<t;<t,<t,-3
; - . L tA2<t <t <t,<t;<t,—3
s b2 3 T4 e adjacent(d1,w1), adjacent(d2,w2),
connected(wl1,w2)
22 def of def. of |
- o - r2
leave(d2) i def. of | enter(dl) State at 7, w2 / O 0q2 OOZ

\ 4

Fi Enavigateé _
P P i 1]/
t, ts 1, t tg L, wi o 0100

Deliberation in Planning and Acting

After supporting navigate

e Flaws: ¢s. assertions: [7,.,] loc(rl): (w2,d2)
» 4 unsupported assertions [#42.] occupant(d2): (empty,rl)
- b1 Aict [#5,2,] loc(r2): (wl,dl)
POSSIDIC CONTICLS [#5,¢,] occupant(dl): (empty,rl)
supported: [z,] loc(rl)=d1
e Next, use the green ones to [£,,t;] loc(rl): (d1,w1l)
support the blue ones [..t,] occupant(dl): (rl,empty)
e constraint, =t,and t; = f, [,,15] loc(r1): (wl,w2)
[¢,] loc(r2)=d2
[¢,,t5] loc(r2): (d2,w2)
rl: def. of — def. of [¢,,¢5] occupant(d2): (r2,empty)

leave(dl); def of i enter(d2) [¢c,t7] loc(r2): (w2,wl)
inavigate; L B
: oo ; constraints: {+2<¢, =16, <t,<t,<t,—3
tA2<ti=t <t; <ty <t,—3

\ 4

t, =t ty t, t

§ € adjacent(dl,wl), adjacent(d2,w2),
connected(wl1,w2)
2 def of def. of .
-0 S ' r2
leave(d2); def. of | enter(dl) State at ¢, w2 / O Og o

\ 4

F navigate: _ /
: P ; =0y
. ti=t, b 1 L, wi o 0100

Delib

After supporting enter

e Flaws: 2 possible conflicts

P supported:

if t; < s, rl enters d2 before r2 has left

e occupied(d2)=ri,r2

if ¢, <t,, r2 enters d1 before rl has left

e occupied(d2)=r1,r2

® Next, add separation constraints

> 1 <t;and 15, <14

"L def of - def. of
leave(d1); def: of ienter(d2)
EnavigateE .

i, 4=t, t=t, t,
A e —— 7

leave(d2); def. of ienter(dl)
;navigateE

\ 4

ts=t; t,=1g t

Delib

constraints:

State at ¢,

[¢,] loc(rl)=d1

[7.,¢,] loc(rl): (d1,w1l)

[7,,¢,] occupant(dl): (r1,empty)
[#,,2;] loc(rl): (wl,w2)

[24,2,] loc(rl): (w2,d2)

[#4,¢,] occupant(d2): (empty,rl)
|

|

|

|

|

s

NN

t,] loc(r2)=d2
t,ts] loc(r2): (d2,w2)

t,ts] occupant(d2): (r2,empty)

ts,t;] loc(r2): (w2,wl)

te,t,] loc(r2): (wl,dl)
]

[#5,¢,] occupant(dl): (empty,rl)

tH2<t;,=t,<t=t,<t,—3
tA2<t;=t;<t;=t;<t,—3

adjacent(dl,wl), adjacent(d2,w2),

connected(wl1,w2)
r2 |/
w2 / O odzoo%

rl |/
wl //O odlooz

34

After adding separation constraints

® Done!

"L def of - def. of
leave(dl1): def. of ienter(d2)

F navigate _

\ 4

t tL=t, bL=t,

N e

22 def of >_< def. of

leave(d2); def. of ienter(dl)
nawgate

\ 4

Delib

ts=t; t,=1g t

¢,. supported: [z] loc(rl)=dl
[7.,¢,] loc(rl): (d1,w1)
[7,,¢,] occupant(dl): (r1,empty)
[#,,2;] loc(rl): (wl,w2)
[#5,2,] loc(rl): (w2,d2)
[#5,¢,] occupant(d2): (empty,rl)
[£,] loc(r2)=d2
[7,,¢5] loc(r2): (d2,w2)
[7,,¢5] occupant(d2): (r2,empty)
[£5,t7] loc(r2): (w2,w1l)
[£,,¢,] loc(r2): (wl,dl)
[#,,¢,] occupant(dl): (empty,rl)
constraints: {+2<¢t =0,<t=14<t,-3, t;,<¢t
tA2<ts=t,<t;=1,<t,—3, t;<1
adjacent(d1,wl), adjacent(d2,w2),
connected(wl1,w2)
r2 |/
State at £, w2 / O Og OOZ

rl |/
wl //O odlooz

35

Outline

v
v
e Speeding up TemPlan
> Node selection heuristics, detection of constraint violations
e Controllability
e Acting with executable primitives

® Summary

Deliberation in Planning and Acting

36

Node Selection Heuristics

e Ideas similar to those in TemPlan(¢,)
constraint-satisfaction algorithms Flaws < set of flaws of ¢

if Flaws=@ then return ¢

arbitrarily select f € Flaws

e Flaw selection, resolver selection
Resolvers < set of resolvers of f

> Select the flaw with the smallest if Resolvers=@ then return failure
number of resolvers nondeterministically choose p € Resolvers
» Choose the resolver that rules out ¢ < Transform(¢, p)
the fewest resolvers for the other Templan(¢, X)
flaws

® More advanced heuristics
» EUROPAZ2 [Bernardini & Smith, 2008]
» FAPE [Bit-Monnot, 2016]

Deliberation in Planning and Acting 37

Detecting Constraint Violations

e Each time TemPlan applies a resolver, it
modifies (T,C)

» Some resolvers will make (T,C)
Inconsistent

— No solution 1n this part of the
search space

e Detect inconsistency => prune this
part of the search space

e Don’t detect it => waste time looking
for a solution

e How to detect inconsistency early?

Deliberation in Planning and Acting

AN

38

Detecting Constraint Violations

e When TemPlan changes C, check consistency

> If Cis inconsistent, then
e No solutions below this node ﬁi
e Prune it /\ [\ T\\\ /\
TemPlan(¢, X)
Flaws <+ set of flaws of ¢
if Flaws=@ then return ¢
arbitrarily select f € Flaws
Resolvers < set of resolvers of f

if Resolvers= then return failure
T ——— nondeterministically choose p € Resolvers

return failure ~. ¢ « Transform(¢, p)
Templan(¢, X))

Deliberation in Planning and Acting 39

Consistency of C

e C contains two kinds of constraints
> Object constraints
e loc(r)#/,, [< {loc3,locd}, r=rl, o+o0'
> Temporal constraints

o 1,<t,, a<t t<t, a<t'—t<b

e Assume object constraints are independent of temporal constraints
and vice versa

> exclude things like ¢ < speed(rl)

e Two separate subproblems
(1) are the object constraints consistent?
(2) are the temporal constraints consistent?

> (C1is consistent iff both are consistent

Deliberation in Planning and Acting

40

Object Constraints

e Consistency of object constraints
> Constraint-satisfaction problem (CSP) — NP-hard
e Can write an algorithm that’s complete but runs in exponential time
o [fthere’s an inconsistency, always finds it

e Might do a lot of pruning, but spend lots of time at each node

e Instead, use a constraint-satisfaction technique that’s
incomplete but takes polynomial time

e arc consistency, path consistency

> Detect some inconsistencies but not others
e Consequence //\ /1\

» Don’t prune as much of the search space |
> Affects efficiency but not correctness /\ [\

Deliberation in Planning and Acting 41

Time Constraints

To represent time constraints:

e Simple Temporal Networks (STNs)

» Networks of constraints on time points

e Can modify TemPlan to

t3
> X[4, 5]

> Create initial network from the constraints in C

» Check consistency in polynomial time

e O(n?)
> Every time C changes
e update the network

e check consistency

TemPlan(¢, X)
Flaws <+ set of flaws of ¢
if Flaws=@ then return ¢
arbitrarily select f € Flaws
Resolvers < set of resolvers of f
if Resolvers= then return failure

update temporal network
if 1t’s inconsistent then
return failure

nondeterministically choose p € Resolvers
—, ¢ < Transform(¢, p)

Templan(¢, X))

Deliberation in Planning and Acting

42

Time Constraints

® Simple Temporal Network (STN):

e a pair (V,E), where
e V= {asetof temporal variables {z,, ..., 1}
e £C V2Zisasetofarcs

® Each arc (¢,1) 1s labeled with an interval r;; = [a,b]
e Represents constrainta <, — 4, <b
e Equivalently, -b<¢,—1<-a

e Representing unary constraints: dummy variable ¢, =

A
4)1‘3
% N

[1€

> Arc ry, = (¢, t;) labeled with [a,b] represents a <¢,—0<b

® Solution to an STN: integer value for each ¢, all constraints satisfied

e Consistent STN: has a solution

® Minimal STN: for every arc (¢,

°Y]
> there’s at least one solution such that ¢ —¢,=1¢

Deliberation in Planning and Acting

t.) with label [a,b], for every ¢ € [a,b]

43

Operations on STNs

e Intersection: vy
{ —> J;
tj_tierij:[aijabij] ! r,ij
4 — ! !/
tj_tierij_[aijabij] rijm’",ij

Infer L—t S ry N = [max(a a’y), min(bijab,ij)]

ija

e Composition: - I ry
l
t—1; < 1y = lapbyl
ti

_ .
t]_tke I’kj—[ak],bkj] %]
_ Vo ® Ty
Infel‘ tj — ti S rik ° V'kj - [aik +akj, bik +bkj] ik ki
Reason: shortest and longest times for the two intervals

U
. .) V..
e Consistency checking: V N
i —> 1

Fik» Ty > I are consistent it 7, N (ry * 1) 9 . i

l

ri N (7 * rkj)

Deliberation in Planning and Acting

44

Two Examples

[1,2] N34

4 —> 3
[2,3]

e STN (V,T), where
> V: {tla t29 t3}
> B={r,=[1.2], my=[3.4], r5=12,313
e Composition:
> 13 =1 s = [4.6]
e Can’t satisfy both r;; and r';
> ryNr'=1[2,3]1N1[4,6]=2
e (V,T) is inconsistent

Deliberation in Planning and Acting

[1,2] [3.4]

f —> I
[2,5]
e STN (V,E), where

> V={t, 1, t;}

> B={r,=[1,2], r5=[3.4], r;=[2,5]}
® As before, r';; =[4,6]
e This time, (V,T) is consistent

> ri; Nr';=1[4,5]

® To get minimal network,
change r; < [4,5]

[1,2] 2 [3.,4]

t —> 13
[4,5]

45

Operations on STNs

® PC (Path Consistency) algorithm:
» Consistency checking on all triples

> n constraints => n3 triples
=> time O(n?)

® Dectects inconsistent networks
> r; = la;b;] empty => inconsistent
e Makes STN minimal

PC(V,T):
forl <k<mndo
for1<i<j<n, i#k j#k do
ry Ty N [rye r,g-]
ifrl-j = o then
return inconsistent

» Shrinks each r;; to exclude values that aren’t in any solution

e Can modify it to make it incremental

> Input: a consistent, minimal STN, and a new constraint r’;

» Incorporate 7'; in time O(n?)

e Whenever the network becomes inconsistent,

prune this part of the search space

Deliberation in Planning and Acting

46

Outline

SN NSNS

e Controllability
e Acting with executable primitives

® Summary

Deliberation in Planning and Acting

47

Controllability

® Suppose TemPlan gives you a temporal network
and you want to perform it

» Constraints on time points

» Need to reason about these 1n order to decide
when to start each action

Deliberation in Planning and Acting

[1 [30,50])tz

bring&move *
o“ d\
““’k\j/\

uncover ;

t3 [5,10] "ty

48

Controllability

® Solid lines: duration constraints
> Robot will do bring&move, will take 30 to 50 time units

> Crane will do uncover, will take 5 to 10 time units

e Dashed line: synchronization constraint 1]

e Objective

> Choose time points that will
satisfy all the constraints

[30, 50])tz
» Don’t want either the crane or robot to wait long bring&move” <
» At most 5 seconds between the two ending times k&
4
uncover 4
t3 [5,10] " 14
S) |
cl r1 |4 ¢c2 | cl|)c3
O O

c2

1rl

o0 O

O

Deliberation in Planning and Acting

49

Controllability

® Suppose we use PC

» get a minimal and consistent network

PC(V,D).
for]l <k<mndo
for1<i<j<n, i#k j#k do
ry Ty N7y rkj]
ifrl.j = o then
return inconsistent

® There exist time points that satisfy all the constraints

e Would work if we could choose all four time points 1 130,501 12

> But we can’t choose ¢, and ¢,

® ¢, and t; are controllable

> Actor can control when each action starts
® /, and t, are contingent

> can’t control how long the actions take

> random variables that are known
to satisfy the duration constraints

e 1, € [1;+30, £,+50]
° 1y, & [1%5, 1,+10]

Deliberation in Planning and Acting

bring&move *
O‘ d\

S
o N
‘\/
*

*

uncover A

t3 [5,10])t4

bring&move
1 [30,50] I2

L4)
o Ve, -
* , ®
LS D . /‘
. > Q
-

e, 55
O I SN O
ARG)
J) 5
2 QY 3
: \ e, .

50

Controllability

brlng&move
: . [1 [30,50]
e Can’t guarantee that all of the constraints WD)4]
. B “‘ R "o /
will be satisfied —, wadSy A,
N ‘\‘ ."~:~:. KRR
J\j\ . :. Q.: “\/
=2 SN T
4_ uncover”

e Start bring&move at time ¢, =0

® Suppose the durations are

e bring&move 30, uncover 10 o But if we start uncover at ¢, < 25,
> t,=0+30=230 neither action has finished yet
> by = t3 + 10 » We don’t yet know how long
>ty —t, =ty — 20 they’ll take
° Constramt 5<t,—1,<5 e Might instead get this:
> 5<4,-20<5 e bring&move 50, uncover 5

> t,=0+50=50
> t,=1,+5<25+5=30
> t,—1,<30—50=-20

e Need to start uncover at t; <25
» Ift;>25thent, —t,> 5

Deliberation in Planning and Acting

51

STNUs

e STNU (Simple Temporal Network with Uncertainty):
> A 4-tuple (V,V,TE)
o V={controllable time points} = {starting times of actions}
e V ={contingent time points} = {ending times of actions}
e T ={controllable constraints}, E ={contingent constraints}
e Controllable and contingent constraints:
> Synchronization between two starting times: controllable
» Duration of an action: contingent
> Synchronization between ending points of two actions: contingent
> Synchronization between end of one action, start of another:
e Controllable if the new action starts after the old one ends

e Contingent if the new action starts before the old one ends

e Want a way for the actor to choose time points in V (starting times) that guarantee
that the constraints are satisfied

Deliberation in Planning and Acting

52

Dynamic Execution

o (V\V,EE) is strongly controllable if the actor can choose values for V
such that for every choice of values for V, success will occur

> Actor can choose the values for V offline

> The right choice will work regardless of V

o (V\V,EE) is weakly controllable if the actor can choose values for V
such that for at least one choice of values for V, success will occur

> Actor can choose the values for V only if the actor knows in advance
what the values of V will be

e Want dynamic controllability

> Choose values for V online by observing what has happened so far

> Need a strategy for how to choose the values

Deliberation in Planning and Acting

53

Dynamic Execution
Fort=0,1, 2, ...

1. Actor chooses time points V, & V that can be triggered at time ¢ without
violating any synchronization constraints

— actions that the actor chooses to start

2. Simultaneously, environment chooses time points V, & V that can be triggered
at time ¢ without violating any duration constraints

— actions that the environment chooses to finish

3. They trigger the time points they’ve chosen, and remove them from V and V
—- history & = record of all that has happened= {V,, V,} fori =1, ..., ¢

4. Failure if any of the constraints are violated
- r; = [Lu] is violated if t; and ¢, have values (step 3) and ¢,—¢; & [Lu]

5. Success if no constraints violated, and V=V =2

® Dynamic execution strategy o ,(h) for actor, o,(h) for environment

> What to choose next, given 4

o (V,V,EE)is dynamically controllable if there exists a o, that will guarantee success
for every oy

Deliberation in Planning and Acting

54

Example

e Instead of a single bring&move task, two separate bring and move tasks

t t " 115.2 2
1. [159_)25] [0’5]>.—[5’_O]—)

bring move
""“[_57 5]
e Dynamic execution strategy Uncover 4
> trigger ¢, at whatever time you want t: (5, 10] " 4

> wait and observe ¢

> trigger t' at any time from fto £ + 5

> triggert; =t + 10

> foreveryt, € [f'+ 15, +20]and every t, € [t; + 5, t; + 10]
- t, € [f'+15,¢+20]
- sot—t € [-5,5]

» So all the constraints are satisfied

Deliberation in Planning and Acting

55

Dynamic Controllability Checking

e How to check whether an STNU is dynamically controllable
> Extension of consistency checking

e For a chronicle ¢ = (A,S7,T,C)
» Temporal constraints in C correspond to an STNU

e TemPlan can keep the STNU dynamically controllable

» use the incremental version of PC

e If PC reduces the size of a contingent constraint 7;
> Then the STNU isn’t dynamically controllable
—> prune this path in the search space
> Otherwise, further test of dynamic controllability

e extension of Path Consistency, additional constraint propagation rules

Deliberation in Planning and Acting 56

Outline

D N N N NN

e Acting with executable primitives
> Acting with atemporal refinement
» Dispatching
» Observation actions

® Summary

Deliberation in Planning and Acting

57

Atemporal Refinement of Primitive Actions

e® TemPlan’s actions may correspond to tasks for Rae to refine using
refinement methods not in TemPlan

, leave(r, d, w)
° TemPI.an.actlon assertions: [ts, te]loc(r):(d, w)
(descriptive model) [ts, te]occupant(d):(r, empty)
constraints: t. < tg + 01
adjacent(d, w)

m-leave(r, d, w, e)
® Rae refinement method task: leave(r, d, w)
(operational model) pre: loc(r)=d, adjacent(d, w), exit(e, d, w)
body: until empty(e) wait(1)
goto(r, e)

Deliberation in Planning and Acting 58

Atemporal Refinement of Primitive Actions

@ TemPlan’s actions may correspond to tasks for Rae to refine using
refinement methods not in TemPlan

@ TemPlan action unstack(k,c,p)
(descriptive model) assertions:
constraints: ...

m-unstack(k, ¢, p)
task: unstack(k, ¢, p)
pre: pos(c)=p, top(p)=c, grip(k)=empty
attached(k, d), attached(p, d)
body: locate-grasp-position(k, c, p)
move-to-grasp-position(k, ¢, p)
grasp(k, ¢, p)
until firm-grasp(k, c, p) ensure-grasp(k, ¢, p)
lift-vertically(k, ¢, p)
move-to-neutral-position(k, ¢, p)

® Rae refinement method
(operational model)

Deliberation in Planning and Acting 59

Discussion

® Pros
» Simple online refinement with Rae
> Avoids breaking down uncertainty of contingent duration
» Can be augmented with temporal monitoring functions in Rae
> E.g., watchdogs, methods with duration preferences
e Cons

> Does not handle temporal requirements at the command level, e.g.,
concurrency synchronization

e Can augment Rae to include temporal reasoning
» Call it eRae

> One essential component: a dispatching function

Deliberation in Planning and Acting

60

Acting With Temporal Models

e Dispatching procedure: a dynamic execution strategy
> Controls when to start each action

> Given a dynamically controllable plan with executable primitives, triggers
corresponding commands from online observations

e Example

> robot r2 needs to leave dock d2
before robot r1 can enter d2

r2 7
> crane k needs to uncover c w2 o 0 E 37/
then put it onto rl =< p

t; leave(r2,d2) {
—0 a4
di

y b W !

.q"".).‘—o)“.S—O‘

leave(rl,d1) inavigate(rl) enter(rl,d2)- ,))
: W U7 8 9
-‘- ;.quup.q ----- .).—o
;3 e ~ unstack(k,c) putdown(k,c,rl) leave(rl,d2)
4._)0).

unstack(k,c’,p) stack(k,c’,q)

Deliberation in Planning and Acting 61

Dispatch(V,V,E,E)

Dlspatchlng e initialize the network
e while there are time points in Y that haven’t
e Let (V,V,EE) be a controllable yet been triggered, do
STNU that’s grounded > update now
e Different from a grounded > update the time points in V that were
expression in logic triggered since the last iteration

> enabled < {t € V|t hasn’t yet been

> At least one time point 7 1S
P triggered, and /, <now <u,}

instantiated

_ _ , > for every t € enabled such that now = u,
e This bounds each time point ¢

oy . e trigger ¢
within an interval [/, u,]

> arbitrarily choose other time points in
enabled, and trigger them

Controllable time point 7 in the future: > 1n the network, propagate values of

C .. : triggered timepoints
® ¢ 1is alive if current time now €[, u,] = .

e This changes [/,u,] for each future

® t1s enabled it timepoint ¢

> 1t’s alive
» for every precedence constraint #'< ¢, ¢ has occurred

> for every wait constraint (¢,, a), ¢, has occurred or o has expired

Deliberation in Planning and Acting

Dispatch(V,V,E,E)

Example o

e trigger ¢,, observe leave finish
e cnable and trigger ¢,, this enables #;, ¢,

e trigger t; (start leave(r2,d2)) soon
enough to allow enter(rl,d2) at time ¢

e trigger ¢, (start unstack(k,c’)) soon
enough to allow stack(k,c’) at time #,

e rest of plan is linear: choose each ¢,
after the previous action ends

; leave(r2,d2)

®

) .
l f i 3 15
.q.....).‘—o).ﬁo‘

leave(rl,d1) inavigate(rl) enter(rl,d2),
3 t6
Y
t4 ._)o).

unstack(k,c’,p) stack(k,c’,q)

Deliberation in Planning and Acting

“ unstack(k,c) putdown(k,c,rl) leave(rl,d2)

initialize the network

while there are time points in V/ that haven’t
yet been triggered, do

» update now

> update the time points in V that were
triggered since the last iteration

> enabled < {t € V|t hasn’t yet been
triggered, and /, <now <u,}
> for every t € enabled such that now = u,
e trigger ¢

> arbitrarily choose other time points in
enabled, and trigger them

> in the network, propagate values of
triggered timepoints

e This changes [/,u,] for each future
timepoint ¢

Iy ly

63

Example

® trigger ¢, at time 0

e walit and observe ¢

e trigger ¢’ at any time from ¢ to #+5

e trigger ¢; at time ¢’ + 10
> t, € [+ 15, ¢ +20]
> t, € [t;+5,t,+10]

=[¢'+15,¢ + 20]
® SOt —t; €[5, 5]

@ So all the constraints are satisfied

t t
bring

Deliberation in Planning and Acting

[

' 4
o 115, 20] 2

move

*
.

Dispatch(V,V,E,E)

uncover
.—

5, 10]

14

initialize the network

while there are time points in V/ that haven’t
yet been triggered, do

» update now

> update the time points in V that were
triggered since the last iteration

> enabled < {t € V|t hasn’t yet been
triggered, and /, <now <u,}

> for every t € enabled such that now = u,
e trigger ¢

> arbitrarily choose other time points in
enabled, and trigger them

> in the network, propagate values of
triggered timepoints

e This changes [/,u,] for each future
timepoint ¢

»»“" [_5 9 5]

64

Deadline Failures

® Suppose something makes it impossible to start an action on time
e Do one of the following:
> stop the delayed action, and look for new plan

> let the delayed action finish; try to repair the plan by resolving violated
constraints at the STNU propagation level

e ¢.g., accommodate a delay in navigate by delaying the whole plan

> let the delayed action finish; try to repair the plan some other way

; leave(r2,d2)

®
: .
l f i 3 15
.—o-.....).‘—o).ﬁo‘
leave(rl,d1) inavigate(rl) enter(rl,d2)- ,))
: W U7 8 9
.-‘- ;._)O"'")._)o,._)o
t4'*. > _)‘6 ~" unstack(k,c) putdown(k,c,rl) leave(rl,d2)

unstack(k,c’,p) stack(k,c’,q)

Deliberation in Planning and Acting 65

Partial Observability

e Tacit assumption: all occurrences of contingent events are observable
> Observation needed for dynamic controllability

> In general not all events are observable
e POSTNU (Partially Observable STNU)

Controllable

Timepoints< Invisible
Contingent<
Observable

e Dynamically controllable?

Deliberation in Planning and Acting

66

Observation Actions

to
0/1900 2
......... y 30] ’
‘o Sl o[1,2] b [20,25) L2
W’ n driving ““

%[5, 10]

[25,30] -

t3 cooking ¢,

® Controllable
¥ Invisible

Contingent {
© observable

Dynamic Controllability

e A POSTNU is dynamically controllable if

> there exists an execution strategy that chooses future controllable points
to meet all the constraints, given the observation of past visible points

@ Observable # visible
® Observable means it will be known when observed

e It can be temporarily hidden

Controllable

Timepoints< Invisible
Contingent< Visible
Observable < >
Hidden

Deliberation in Planning and Acting

68

D N N N N N

® Summary

Deliberation in Planning and Acting

Outline

69

Summary

e Timelines
> Temporal assertions (change, persistence), constraints
> Conflicts, consistency, security, causal support
> Consistency, security, causal support
e Chronicle: timelines + supported/unsupported info + tasks
e Actions represented by chronicles; preconditions <> causal support
e Planning problems
> three kinds of flaws and their resolvers:
e tasks, causal support, security
> partial plans, solution plans
e Planning: TemPlan
» Like PSP but with tasks, temporal assertions, temporal constraints
» Managing constraints: like CSPs
e Temporal constraints: STNs, PC algorithm (path consistency)

e Acting: dynamic controllability, STNUSs, RAE and eRAE, dispatching

Deliberation in Planning and Acting

70

Relation to the Book

e Ghallab, Nau, and Traverso (2016).
Automated Planning and Acting.
Cambridge University Press

e Free downloads:

» Lecture slides, final manuscript

> http://www.laas.fr/planning

e Table of Contents

1.

Introduction
Deterministic Models
Refinement Methods

Temporal Models

A A o

Nondeterministic Models
Probabilistic Models

Other Deliberation Functions

Deliberation in Planning and Acting

[Any guestions?

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

71

