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Motivation

= Some success stories …
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Remote	Agent	Experiment	(RAX)
= First AI control system to control a spacecraft without human supervision

Ø Deep Space One, 1999
= Key component: RAX-PS planner/scheduler
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IxTeT

= LAAS/CNRS, 
Toulouse, France

= early 1990s to 
early 2000s
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T-ReX Casper	(NASA	JPL)

= NASA JPL, ongoing= MBARI, around 2005-2010

= Common characteristic: 
explicit representation of time
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Temporal	Models
= Durations of actions
= Delayed effects and preconditions

Ø e.g., resources borrowed or consumed during an action
= Time constraints on goals

Ø relative or absolute
= Exogenous events expected to occur in the future

Ø when?
= Maintenance actions: 

Ø maintain a property (more general than just changing a value)
Ø e.g., track a moving target, keep a spring latch in position

= Concurrent actions
Ø interacting effects, joint effects

= Delayed commitment 
Ø instantiation at acting time
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Timelines
= Up to now, we’ve used a “state-oriented view”

• Sequence of states s0, s1, s2

• Instantaneous actions transform each state into the next one
• No overlapping actions

= Switch to a “time-oriented view”
Ø Sequence of integer time points
• t = 1, 2, 3, …

Ø Scale is arbitrary
• seconds, milliseconds, …

Ø For each state variable, a timeline
• Values during different time intervals
• Reflect actions and events to occur at those times

Ø State at time t = {values of the state-variable at time t}
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Where	We’re	Going

= Planning is constraint-based
Ø Constrain values of state variables 
• at time points, over time intervals

= Somewhat like plan-space planning
(partial-order causal link planning)
Ø But with time durations, task refinement

= Can have a complete plan in which time points are constrained, but not 
completely fixed
Ø Provide flexibility at acting time
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Outline

✓ Introduction

= Representation

Ø Timelines, separation constraints, causal support, actions, tasks, chronicles

= Temporal planning

= Speeding up TemPlan

= Controllability

= Acting with executable primitives

= Summary
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Timeline
= A pair (T,C )

Ø partially specifies evolution of a state variable
= T : temporal assertions

Ø change:
[t1, t2] loc(r1) : (loc1, l)
[t3, t4] loc(r1) : (l, loc2)

Ø persistence:
[t2, t3] loc(r1) = l

= C : constraints
Ø time constraints:

t1 < t2 < t3 < t4
0 < t4 – t3 ≤ c + 2

where c is a constant
Ø object constraints: 

l ≠ loc1, l ≠ loc2

= Union of several timelines
Ø (T,C ) = (T1,C1) ∪… ∪ (Tn,Cn)
• T = T1∪… ∪ Tn

• C = C1∪… ∪ Cn

t1 t3t2 t4
time

loc(r1)

loc1

loc2

l

Change

Persistence
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Consistency
= Let (T,C) be a timeline or union of several timelines
= Let (T ′,C′) be a ground instance of (T,C)

Ø (T ′,C′) is consistent if T ′ satisfies C′
and every state variable has at most one value at a time

= (T,C) is consistent if it has at least one consistent ground instance

= Consistent:
Ø T = {[t1,t2] loc(r)=loc1,  

[t3,t4] loc(r):(loc1,loc2)}
Ø C = {t1< t2< t3 < t4}

= Inconsistent:
Ø T = {[t1,t2] loc(r)=loc1,  

[t3,t4] loc(r):(l,loc1)}
Ø C = {t1< t3< t2, l ≠ loc1}

loc(r)	

loc1
loc2

loc1

t1 t3t2 t4
time

loc(r)	
loc1

l

t1 t3 t2 t4
time

loc1
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Security
= (T,C) – timeline or union of a set of timelines

Ø (T,C) is secure if
• it’s consistent (i.e., at least one consistent ground instance)
• every ground instance (T ′,C′) that satisfies C′ is consistent

= Secure:
Ø T = {[t1,t2] loc(r1)=loc1,  

[t3,t4] loc(r):(l, l′)}
Ø C = {t1< t2< t3 < t4}

= Consistent but not secure:
Ø T = {[t1,t2] loc(r)=loc1,  

[t3,t4] loc(r1):(l,l′)}
Ø C = {t1< t2, t3< t4}

loc(r)
loc1 l′

l

t1 t3 t2 t4
time

loc(r1)

loc(r)

loc1
l′

l

t1 t3t2 t4
time

loc(r1)



13Deliberation	in	Planning	and	Acting

Security

= Consistent but not secure:
Ø T = {[t1,t2] loc(r)=loc1,  

[t3,t4] loc(r1):(l,l′)}
Ø C = {t1< t2, t3< t4}

= Can make it secure by adding a separation constraint
Ø r ≠ r1
Ø t2 < t3

Ø t4 < t1

Ø t2 = t3, l = loc1
Ø t4 = t1, l′ = loc1

Like	a	resolver	in	
plan-space	planning

loc(r)
loc1 l′

l

t1 t3 t2 t4
time

loc(r1)

Like	a	threat in	
plan-space	planning
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= Let α be one of these:
Ø [t1,t2] loc(r1)= loc1
Ø [t1,t2] loc(r1):(loc1, loc2)

= α says that at time t1, r1	is at location loc1
Ø How did it get there?

= Causal support for α
Ø something that establishes loc(r1)= loc1 at time t1

• Another temporal assertion
– [t0,t1] loc(r1)= loc1
– [t0,t1] loc(r1):(l, loc1) 

• Or information telling us α is supported a priori

Causal	support

time

loc(r1)

loc1

t1 t2

loc2

time

loc(r1)
loc1

t1 t2

Like	an	open	goal	in	
plan-space	planning

Like	a	resolver	in	
plan-space	planning
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Causal	support

= Timeline (T,C)
Ø T = {α1, α2, α3}
• α1 = [t1,t2] loc(r1):(loc1,l)
• α2 = [t2,t3] loc(r1)=l
• α3 = [t3,t4] loc(r1):(l,loc2) }

Ø C = { t1 < t2 < t3 < t4, 
l ≠ loc1, l ≠ loc2}

• α3 is causally supported by α2

• α2 is causally supported by α1

• No causal support for α1

= (T,C) is causally supported if every assertion has a causal support
Ø Three ways to add causal support for an assertion

In	plan-space	planning,	like	adding	a	resolver	to	a	partial	plan

t1 t3t2 t4
time

loc(r1)

loc1

loc2

l

Change

Persistence

α1 α2 α3
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Establishing	causal	support

= Add [t3,t4] loc(r1) = loc2
Ø Supported by the first 

temporal assertion
Ø Supports the second one

(1) Add a persistence assertion

Timeline (T,C)
T = {[t1,t2] loc(r1):(loc1,loc2),

[t3,t4] loc(r1):(loc2,loc3) }
C = {t1 < t2 < t3 < t4 }

time

loc(r1)

loc1

loc2

t1 t2 t3 t4

Change

Persistence

time
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Establishing	causal	support

= Add t2 = t3, l = loc2

time

loc(r)

loc1
loc2

t1 t2 t3 t4

l

time

loc(r)

loc1
loc2

t1 t2 = t3 t4

loc2

(2) Add constraints

Timeline (T,C)
T = {[t1,t2] loc(r1):(loc1,loc2),

[t3,t4] loc(r)	= l }
C = {t1 < t2, t3 < t4 }
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Establishing	causal	support

= Add [t2,t3] loc(r1):(loc1,loc3)

= Caveat:
Ø Can’t just do this directly
Ø It needs to be part of an action

loc4

time

loc(r1)

loc3

t1 t2 t3 t4

loc1

loc4

time

loc(r1)

loc3

t1 t2 t3 t4

loc1

(3) Add a change assertion

Timeline (T,C)
T = {[t1,t2] loc(r1)	= loc1,

[t3,t4] loc(r1):(loc3,loc4)}
C = {t1 < t2 < t3 < t4 }
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Actions

= Action or primitive task: 
Ø a triple (head,T,C)
• head = name(arg1, arg2,…, argn)
• (T,C) is the union of one or more timelines

= An action will always have two additional arguments
Ø starting time ts

Ø ending time te
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Actions
= enter(r,d,w)

Ø r enters d from an adjacent 
waypoint w

enter(r,d,w)
assertions:

[ts,te] loc(r): (w,d)
[ts,te] occupant(d): (empty,r) 

constraints:
te ≥ ts+3
adjacent(d,w) 

= loc(r) changes to d
= dock d becomes occupied by r

= Things that need to be supported
= At time ts

Ø r at waypoint w
Ø d empty

d
w r
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Actions
= leave(r,d,w)

Ø robot r goes from dock d
to adjacent waypoint w

leave(r,d,w)
assertions:

[ts,te] loc(r): (d,w)
[ts,te] occupant(d): (r,empty) 

constraints:
te ≥ ts+2
adjacent(d,w) 

= loc(r) changes to w
= dock d becomes empty

= Need causal support at time ts

Ø r at dock d
Ø d occupied by r

d

w

r
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d2d1

Actions
= navigate(r,w,x)

Ø robot r goes from waypoint w
to connected waypoint x

navigate(r,w,x)
assertions:

[ts,te] loc(r): (w,x) 
constraints:

ts < te
connected(d,w) 

= loc(r) changes to x

= Need causal support at time ts

Ø r at waypoint w

w
r

x
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Task	and	Method

= Task: move robot r to dock d
Ø [ts ,te] move(r,d)

= Refinement method:
m-move1(r,d,d′,w,w′)

task: move(r,d)
refinement:

[ts,t1] leave(r,d′,w′)
[t2,t3] navigate(w′,w)
[t4,te] enter(r,d,w)

constraints:
ts < t1, t1 ≤ t2, t2 < t3, t3 ≤ t4, t4 < te
adjacent(d,w), adjacent(d′,w′) 
connected(w,w′)

ts

leave

navigate

t1 t3t2 t4 te

enter

ts t1 t2 t3 t4 te

[ts ,te] move(r,d)



24Deliberation	in	Planning	and	Acting

Chronicles

= Chronicle ϕ = (A,ST,T,C) 
Ø A: temporally qualified tasks
• includes primitive tasks (actions)

Ø ST : a priori supported assertions
Ø T: temporally qualified assertions
Ø C: constraints

= ϕ can include
Ø Current state and future predicted events
Ø Tasks to be performed
Ø Assertions and constraints to be satisfied

= Can represent
• a planning problem
• partial or full solution

tasks:
[ts,te] move(r1,d2)
[ts,te] move(r2,d1)

supported:
[ts] loc(r1)=d1
[ts] loc(r2)=d2

constraints:
ts < te
adjacent(d1,w1), 
adjacent(d2,w2),
connected(w1,w2) 

d1

d2
r2

w1 r1

w2
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Outline

✓ Introduction

✓ Representation

= Temporal planning

Ø Algorithm, example, heuristics 

= Speeding up TemPlan

= Controllability

= Acting with executable primitives

= Summary
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Planning	Algorithm

= Input is a chronicle 
= Repeatedly 

Ø select a flaw
• arbitrary choice

Ø choose a resolver
• nondeterministic choice

= Three kinds of flaws
1. non-refined task
• Resolver: apply refinement method or action definition

2. unsupported assertion
• Resolver: add causal support

3. possibly-conflicting assertions
• Resolver: separation constraint

Like	an	open	goal	in	plan-space	planning

Like	a	threat	in	plan-space	planning

Like	a	task	in	SeRPE
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Initial	Chronicle	for	a	Planning	Problem
= Flaws:

Ø two non-refined tasks

= Next, refine them 
• apply the move	method

ϕ0: tasks: [ts,te] move(r1,d2)
[ts,te] move(r2,d1)

supported: [ts] loc(r1)=d1
[ts] loc(r2)=d2

constraints: ts < te
adjacent(d1,w1), 
adjacent(d2,w2),
connected(w1,w2) 

move	to	d2

ts te

move	to	d1

ts te

r1:

r2: d1

d2
r2

w1 r1

w2State at ts
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The	move	method

= Task: move robot r to dock d
Ø [ts ,te] move(r,d)

= Refinement method:
m-move1(r,d,d′,w,w′)

task: move(r,d)
refinement:

[ts,t1] leave(r,d′,w′)
[t2,t3] navigate(w′,w)
[t4,te] enter(r,d,w)

constraints:
ts < t1, t1 ≤ t2, t2 < t3, t3 ≤ t4, t4 < te
adjacent(d,w), adjacent(d′,w′) 
connected(w,w′)

ts

leave

navigate

t1 t3t2 t4 te

enter

ts t1 t2 t3 t4 te

[ts ,te] move(r,d)
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After	refining	move
= Flaws: 

Ø 6 non-refined tasks (actions)

= Next, refine the red ones
• apply action definition

ϕ1: tasks: [ts,t1] leave(r1,d1,w1)
[t2,t3] navigate(r1,w1,w2)
[t4,te] enter(r1,d2,w2)
[ts,t5] leave(r2,d2,w2) 
[t6,t7] navigate(r2,w2,w1) 
[t8, te] enter(r2,d1,w1)

supported: [ts] loc(r1)=d1
[ts] loc(r2)=d2

constraints: ts < t1 ≤ t2 < t3 ≤ t4 < te
ts < t5 ≤ t6 < t7 ≤ t8 < te
adjacent(d1,w1), adjacent(d2,w2),
connected(w1,w2)

d1

d2
r2

w1 r1

w2State at ts

leave(d1)

navigate

enter(d2)

ts t1 t2 t3 t4 te

leave(d2)

navigate

enter(d1)

ts t5 t6 t7 t8 te

r1:

r2:
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After	refining	leave
= Flaws: 

Ø 4 unrefined tasks
Ø 4 unsupported assertions

= Next, refine the green and blue ones
• apply action definitions

ϕ2: tasks: [t2,t3] navigate(r1,w1,w2)
[t4,te] enter(r1,d2,w2) 
[t6,t7] navigate(r2,w2,w1) 
[t8, te] enter(r2,d1,w1)

assertions: [ts,t1] loc(r1): (d1,w1)
[ts,t1] occupant(d1): (r1,empty)
[ts,t5] loc(r2): (d2,w2)
[ts,t5] occupant(d2): (r2,empty)

supported: [ts] loc(r1)=d1
[ts] loc(r2)=d2

constraints: ts < t1 ≤ t2 < t3 ≤ t4 < te
ts < t5 ≤ t6 < t7 ≤ t8 < te
adjacent(d1,w1), adjacent(d2,w2),
connected(w1,w2)

d1

d2
r2

w1 r1

w2State at ts

def. of 
leave(d1)

navigate

enter(d2)

ts t1 t2 t3 t4 te

def. of 
leave(d2)

navigate

enter(d1)

ts t5 t6 t7 t8 te

r1:

r2:
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After	refining	navigate and	enter
= Flaws:

Ø 10 unsupported assertions
Ø 2 possible conflicts

= Next, use the black ones to
support the red ones

assertions: [ts,t1] loc(r1): (d1,w1)
[ts,t1] occupant(d1): (r1,empty) 
[t2,t3] loc(r1):	(w1,w2)
[t4,te] loc(r1):	(w2,d2)
[t4,te] occupant(d2): (empty,r1)
[ts,t5] loc(r2): (d2,w2) 
[ts,t5] occupant(d2): (r2,empty) 
[t6,t7] loc(r2): (w2,w1) 
[t8,te] loc(r2): (w1,d1) 
[t8,te] occupant(d1): (empty,r1)

supported: [ts] loc(r1)=d1
[ts] loc(r2)=d2

constraints: ts+2 ≤ t1 ≤ t2 < t3 ≤ t4 ≤ te – 3
ts+2 ≤ t5 ≤ t6 < t7 ≤ t8 ≤ te – 3
adjacent(d1,w1), adjacent(d2,w2),
connected(w1,w2)

ϕ3:

d1

d2
r2

w1 r1

w2State at ts

def. of 
leave(d1) def. of 

navigate

def. of 
enter(d2)

ts t1 t2 t3 t4 te

def. of 
leave(d2) def. of 

navigate

def. of 
enter(d1)

ts t5 t6 t7 t8 te

r1:

r2:
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After	supporting	leave
= Flaws: 

Ø 6 unsupported assertions
Ø 2 possible conflicts

= Next, use the red ones to
support the green ones

• constrain t1 = t2 and t5 = t6

assertions: [t2,t3] loc(r1):	(w1,w2)
[t4,te] loc(r1):	(w2,d2)
[t4,te] occupant(d2): (empty,r1) 
[t6,t7] loc(r2): (w2,w1) 
[t8,te] loc(r2): (w1,d1) 
[t8,te] occupant(d1): (empty,r1)

supported: [ts] loc(r1)=d1
[ts,t1] loc(r1): (d1,w1)
[ts,t1] occupant(d1): (r1,empty)
[ts] loc(r2)=d2
[ts,t5] loc(r2): (d2,w2)
[ts,t5] occupant(d2): (r2,empty) 

constraints: ts+2 ≤ t1 ≤ t2 < t3 ≤ t4 ≤ te – 3
ts+2 ≤ t5 ≤ t6 < t7 ≤ t8 ≤ te – 3
adjacent(d1,w1), adjacent(d2,w2),
connected(w1,w2)

d1

d2
r2

w1 r1

w2State at ts

ϕ4:

def. of 
leave(d1) def. of 

navigate

def. of 
enter(d2)

ts t1 t2 t3 t4 te

def. of 
leave(d2) def. of 

navigate

def. of 
enter(d1)

ts t5 t6 t7 t8 te

r1:

r2:
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After	supporting	navigate
= Flaws: 

Ø 4 unsupported assertions
Ø 2 possible conflicts

= Next, use the green ones to
support the blue ones

• constrain t3 = t4 and t7 = t8

assertions: [t4,te] loc(r1):	(w2,d2)
[t4,te] occupant(d2): (empty,r1) 
[t8,te] loc(r2): (w1,d1) 
[t8,te] occupant(d1): (empty,r1)

supported: [ts] loc(r1)=d1
[ts,t1] loc(r1): (d1,w1)
[ts,t1] occupant(d1): (r1,empty)
[t2,t3] loc(r1):	(w1,w2)
[ts] loc(r2)=d2
[ts,t5] loc(r2): (d2,w2)
[ts,t5] occupant(d2): (r2,empty) 
[t6,t7] loc(r2): (w2,w1) 

constraints: ts+2 ≤ t1 = t2 < t3 ≤ t4 ≤ te – 3
ts+2 ≤ t5 = t6 < t7 ≤ t8 ≤ te – 3
adjacent(d1,w1), adjacent(d2,w2),
connected(w1,w2)

d1

d2
r2

w1 r1

w2State at ts

ϕ5:

def. of 
leave(d1) def. of 

navigate

def. of 
enter(d2)

ts t1 = t2 t3 t4 te

def. of 
leave(d2) def. of 

navigate

def. of 
enter(d1)

ts t5 = t6 t7 t8 te

r1:

r2:
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After	supporting	enter
= Flaws: 2 possible conflicts

if t3 < t5 , r1	enters d2	before r2	has left
• occupied(d2)=r1,r2
if t7 < t1 , r2	enters d1	before r1	has left
• occupied(d2)=r1,r2

= Next, add separation constraints
Ø t1 < t7 and t5 < t3

supported: [ts] loc(r1)=d1
[ts,t1] loc(r1): (d1,w1)
[ts,t1] occupant(d1): (r1,empty)
[t1,t3] loc(r1):	(w1,w2)
[t4,te] loc(r1):	(w2,d2)
[t4,te] occupant(d2): (empty,r1) 
[ts] loc(r2)=d2
[ts,t5] loc(r2): (d2,w2)
[ts,t5] occupant(d2): (r2,empty) 
[t5,t7] loc(r2): (w2,w1) 
[t8,te] loc(r2): (w1,d1) 
[t8,te] occupant(d1): (empty,r1)

constraints: ts+2 ≤ t1 = t2 < t3 = t4 ≤ te – 3
ts+2 ≤ t5 = t6 < t7 = t8 ≤ te – 3
adjacent(d1,w1), adjacent(d2,w2),
connected(w1,w2)

d1

d2
r2

w1 r1

w2State at ts

ϕ6:

def. of 
leave(d1) def. of 

navigate

def. of 
enter(d2)

ts t1 = t2 t3 = t4 te

def. of 
leave(d2) def. of 

navigate

def. of 
enter(d1)

ts t5 = t6 t7 = t8 te

r1:

r2:
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def. of 
leave(d1) def. of 

navigate

def. of 
enter(d2)

ts t1 = t2 t3 = t4 te

def. of 
leave(d2) def. of 

navigate

def. of 
enter(d1)

ts t5 = t6 t7 = t8 te

r1:

r2:

After	adding	separation	constraints

= Done!

supported: [ts] loc(r1)=d1
[ts,t1] loc(r1): (d1,w1)
[ts,t1] occupant(d1): (r1,empty)
[t1,t3] loc(r1):	(w1,w2)
[t3,te] loc(r1):	(w2,d2)
[t3,te] occupant(d2): (empty,r1) 
[ts] loc(r2)=d2
[ts,t5] loc(r2): (d2,w2)
[ts,t5] occupant(d2): (r2,empty) 
[t5,t7] loc(r2): (w2,w1)
[t7,te] loc(r2): (w1,d1) 
[t7,te] occupant(d1): (empty,r1)

constraints: ts+2 ≤ t1 = t2 < t3 = t4 ≤ te – 3, t1 < t7 
ts+2 ≤ t5 = t6 < t7 = t8 ≤ te – 3,  t5 < t3 
adjacent(d1,w1), adjacent(d2,w2),
connected(w1,w2)

d1

d2
r2

w1 r1

w2State at ts

ϕ7:
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Outline

✓ Introduction

✓ Representation
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= Acting with executable primitives

= Summary
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Node	Selection	Heuristics

= Ideas similar to those in 
constraint-satisfaction algorithms

= Flaw selection, resolver selection
Ø Select the flaw with the smallest 

number of resolvers
Ø Choose the resolver that rules out 

the fewest resolvers for the other 
flaws 

= More advanced heuristics
Ø EUROPA2 [Bernardini & Smith, 2008]
Ø FAPE [Bit-Monnot, 2016]
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Detecting	Constraint	Violations

= Each time TemPlan applies a resolver, it 
modifies (T,C)
Ø Some resolvers will make (T,C)

inconsistent
– No solution in this part of the 

search space
• Detect inconsistency => prune this 

part of the search space
• Don’t detect it => waste time looking 

for a solution
= How to detect inconsistency early?
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Detecting	Constraint	Violations

= When TemPlan changes C, check consistency
Ø If C is inconsistent, then
• No solutions below this node
• Prune it

if ϕ is inconsistent then 
return failure
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Consistency	of	C

= C contains two kinds of constraints
Ø Object constraints 
• loc(r) ≠ l2 ,    l∈ {loc3,	loc4},    r = r1,  o ≠ o′

Ø Temporal constraints
• t1 < t3 ,    a < t,    t < t′,    a ≤ t′ − t ≤ b

= Assume object constraints are independent of temporal constraints 
and vice versa
Ø exclude things like t < speed(r1)

= Two separate subproblems
(1) are the object constraints consistent?
(2) are the temporal constraints consistent?

Ø C is consistent iff both are consistent
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Object	Constraints
= Consistency of object constraints

Ø Constraint-satisfaction problem (CSP)  – NP-hard
= Can write an algorithm that’s complete but runs in exponential time

• If there’s an inconsistency, always finds it
• Might do a lot of pruning, but spend lots of time at each node

= Instead, use a constraint-satisfaction technique that’s
incomplete but takes polynomial time

• arc consistency, path consistency
Ø Detect some inconsistencies but not others

= Consequence
Ø Don’t prune as much of the search space
Ø Affects efficiency but not correctness
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Time	Constraints
To represent time constraints:
= Simple Temporal Networks (STNs)

Ø Networks of constraints on time points

= Can modify TemPlan to
Ø Create initial network from the constraints in C
Ø Check consistency in polynomial time 
• O(n3)

Ø Every time C changes
• update the network
• check consistency

t2

[1, 2]

t1 t4
t3

t5

[4, 5]

[1, 7]

update temporal network
if it’s inconsistent then 

return failure



43Deliberation	in	Planning	and	Acting

Time	Constraints
= Simple Temporal Network (STN): 
= a pair (V,E), where

• V = {a set of temporal variables {t1, …, tn}
• E⊆V 2 is a set of arcs

= Each arc (ti,tj) is labeled with an interval rij = [a,b]
• Represents constraint a ≤ tj − ti ≤ b
• Equivalently, –b ≤ ti − tj ≤ –a

= Representing unary constraints: dummy variable t0 = 0
Ø Arc r0i = (t0,ti) labeled with [a,b] represents a ≤ ti – 0 ≤ b

= Solution to an STN: integer value for each ti, all constraints satisfied
= Consistent STN: has a solution
= Minimal STN: for every arc (ti,tj) with label [a,b], for every t∈ [a,b]

Ø there’s at least one solution such that tj − ti = t

t1

t2

t3

[1,2] [3,4]

[2,3]

t1

t2

t3

[1,2] [3,4]

[–3,–2]
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Operations	on	STNs
= Intersection:

tj – ti∈ rij = [aij , bij]
tj – ti∈ r′ij = [a′ij , b′ij]

Infer tj – ti∈ rij ∩ r′ij = [max(aij,a′ij), min(bij,b′ij)]

= Composition:
tk – ti∈ rik = [aik,bik]
tj – tk∈ rkj = [akj,bkj]

Infer  tj – ti∈ rik • rkj = [aik +akj, bik +bkj]
Reason: shortest and longest times for the two intervals 

= Consistency checking:
rik , rkj , rij are consistent if  rij ∩ (rik • rkj) ≠ ∅

ti
tj

rij

rij ∩ r′ij

r′ij

ti

tk

tj

rik
rkj

rik • rkj

ti

tk

tj

rik rkj

rij

rij ∩ (rik • rkj)

rik • rkj
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Two	Examples

= STN (V,E), where
Ø V = {t1, t2, t3}
Ø E = {r12=[1,2],  r23=[3,4],  r13=[2,3]}

= Composition:
Ø r′13 = r12 •  r23 = [4,6]

= Can’t satisfy both r13 and r′13

Ø r13 ∩ r′13 = [2,3] ∩ [4,6] = ∅
= (V,E) is inconsistent

= STN (V,E), where
Ø V = {t1, t2, t3}
Ø E = {r12=[1,2],  r23=[3,4],  r13=[2,5]}

= As before, r′13 = [4,6]
= This time, (V,E) is consistent

Ø r13 ∩ r′13 = [4,5]
= To get minimal network,

change r13 ← [4,5]

t1

t2

t3

[1,2] [3,4]

[2,3] t1

t2

t3

[1,2] [3,4]

[2,5]

t1

t2

t3

[1,2] [3,4]

[4,5]
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Operations	on	STNs

= PC (Path Consistency) algorithm: 
Ø Consistency checking on all triples
Ø n constraints => n3 triples 

=> time O(n3)
= Detects inconsistent networks

Ø rij = [aij,bij] empty => inconsistent
= Makes STN minimal

Ø Shrinks each rij to exclude values that aren’t in any solution

= Can modify it to make it incremental
Ø Input: a consistent, minimal STN, and a new constraint r′ij
Ø Incorporate r′ij in time O(n2)

= Whenever the network becomes inconsistent,
prune this part of the search space

PC(V,E):
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n,  i ≠ k,  j ≠ k do
rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent
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Controllability

= Suppose TemPlan gives you a temporal network 
and you want to perform it
Ø Constraints on time points
Ø Need to reason about these in order to decide 

when to start each action

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover



49Deliberation	in	Planning	and	Acting

r1 c2

Controllability

= Solid lines: duration constraints
Ø Robot will do bring&move, will take 30 to 50 time units
Ø Crane will do uncover, will take 5 to 10 time units

= Dashed line: synchronization constraint
Ø Don’t want either the crane or robot to wait long
Ø At most 5 seconds between the two ending times

= Objective
Ø Choose time points that will

satisfy all the constraints

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

k4

c1
c3

r1c2 c1 c3

k4
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3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Controllability

= Suppose we use PC
Ø get a minimal and consistent network

= There exist time points that satisfy all the constraints
= Would work if we could choose all four time points

Ø But we can’t choose t2 and t4

= t1 and t3 are controllable
Ø Actor can control when each action starts

= t2 and t4 are contingent
Ø can’t control how long the actions take
Ø random variables that are known 

to satisfy the duration constraints
• t2∈ [t1+30, t1+50]
• t4∈ [t3+5, t3+10]

PC(V,E):
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n,  i ≠ k,  j ≠ k do
rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover
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Controllability
= Can’t guarantee that all of the constraints

will be satisfied

= Start bring&move at time t1 = 0
= Suppose the durations are

• bring&move 30,  uncover 10
Ø t2 = 0 + 30 = 30
Ø t4 = t3 + 10
Ø t4 – t2 = t3 – 20

= Constraint –5 ≤ t4 – t2 ≤ 5
à –5 ≤ t3 – 20 ≤ 5

= Need to start uncover at t3 ≤ 25
Ø If t3 > 25 then t4 – t2 > 5

= But if we start uncover at t3 ≤ 25,
neither action has finished yet
Ø We don’t yet know how long 

they’ll take
= Might instead get this:

• bring&move 50,  uncover 5
Ø t2 = 0 + 50 = 50
Ø t4 = t3 + 5 ≤ 25 + 5 = 30
Ø t4 – t2 ≤ 30 – 50 = –20

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover
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STNUs
= STNU (Simple Temporal Network with Uncertainty):

Ø A 4-tuple (V,Ṽ,E,Ẽ )
• V ={controllable time points} = {starting times of actions}
• Ṽ ={contingent time points} = {ending times of actions}
• E ={controllable constraints}, Ẽ ={contingent constraints}

= Controllable and contingent constraints: 
Ø Synchronization between two starting times: controllable
Ø Duration of an action: contingent
Ø Synchronization between ending points of two actions: contingent
Ø Synchronization between end of one action, start of another:
• Controllable if the new action starts after the old one ends
• Contingent if the new action starts before the old one ends

= Want a way for the actor to choose time points in V (starting times) that guarantee 
that the constraints are satisfied
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Dynamic	Execution
= (V,Ṽ,E,Ẽ ) is strongly controllable if the actor can choose values for V

such that for every choice of values for Ṽ, success will occur
Ø Actor can choose the values for V offline
Ø The right choice will work regardless of Ṽ

= (V,Ṽ,E,Ẽ ) is weakly controllable if the actor can choose values for V
such that for at least one choice of values for Ṽ, success will occur
Ø Actor can choose the values for V only if the actor knows in advance 

what the values of Ṽ will be

= Want dynamic controllability
Ø Choose values for V online by observing what has happened so far
Ø Need a strategy for how to choose the values
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Dynamic	Execution
For t = 0, 1, 2, …
1. Actor chooses time points Vt ⊆ V that can be triggered at time t without 

violating any synchronization constraints
– actions that the actor chooses to start

2. Simultaneously, environment chooses time points Ṽt⊆ Ṽ that can be triggered 
at time t without violating any duration constraints
– actions that the environment chooses to finish

3. They trigger the time points they’ve chosen, and remove them from V and Ṽ
– history h = record of all that has happened = {Vt , Ṽt } for i = 1, …, t

4. Failure	if any of the constraints are violated
– rij = [l,u] is violated if ti and tj have values (step 3) and tj – ti ∉ [l,u]

5. Success	if no constraints violated, and V = Ṽ = ∅

= Dynamic execution strategy σA(h) for actor, σE(h) for environment
Ø What to choose next, given h

= (V,Ṽ,E,Ẽ ) is dynamically controllable if there exists a σA that will guarantee success 
for every σE
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Example

= Instead of a single bring&move task, two separate bring and move tasks

= Dynamic execution strategy
Ø trigger t1 at whatever time you want
Ø wait and observe t
Ø trigger t′ at any time from t to t + 5
Ø trigger t3 = t′ + 10
Ø for every t2∈ [t′ + 15, t′ + 20] and every t4∈ [t3 + 5, t3 + 10]

– t4∈ [t′ + 15, t′ + 20]
– so t4 – t3∈ [–5, 5]

Ø So all the constraints are satisfied

t′

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring
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Dynamic	Controllability	Checking

= How to check whether an STNU is dynamically controllable
Ø Extension of consistency checking

= For a chronicle ϕ = (A,ST,T,C) 
Ø Temporal constraints in C correspond to an STNU

= TemPlan can keep the STNU dynamically controllable 
Ø use the incremental version of PC	

= If PC reduces the size of a contingent constraint rij

Ø Then the STNU isn’t dynamically controllable
à prune this path in the search space

Ø Otherwise, further test of dynamic controllability 
• extension of Path Consistency, additional constraint propagation rules
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= Acting with executable primitives

Ø Acting with atemporal refinement

Ø Dispatching

Ø Observation actions

= Summary
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Atemporal Refinement	of	Primitive	Actions

= TemPlan’s actions may correspond to tasks for Rae to refine using 
refinement methods not in TemPlan

= TemPlan action 
(descriptive model)

= Rae refinement method
(operational model)
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Atemporal Refinement	of	Primitive	Actions

= TemPlan’s actions may correspond to tasks for Rae to refine using 
refinement methods not in TemPlan

= TemPlan action 
(descriptive model)

= Rae refinement method
(operational model)

unstack(k,c,p)
assertions: … 
constraints: …
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Discussion

= Pros
Ø Simple online refinement with Rae
Ø Avoids breaking down uncertainty of contingent duration
Ø Can be augmented with temporal monitoring functions in Rae
Ø E.g., watchdogs, methods with duration preferences

= Cons
Ø Does not handle temporal requirements at the command level, e.g., 

concurrency synchronization

= Can augment Rae to include temporal reasoning
Ø Call it eRae
Ø One essential component: a dispatching function
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Acting	With	Temporal	Models
= Dispatching procedure: a dynamic execution strategy

Ø Controls when to start each action
Ø Given a dynamically controllable plan with executable primitives, triggers 

corresponding commands from online observations
= Example

Ø robot r2	needs to leave dock d2	
before robot r1	can enter d2

Ø crane k	needs to uncover c	
then put it onto r1

d1

d2

r2

w1

k

p
c

r1

cʹw2

navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1 t2

t3

t4

t5

t6

t7 t8 t9
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Dispatching
= Let (V,Ṽ,E,Ẽ ) be a controllable 

STNU that’s grounded
= Different from a grounded 

expression in logic
Ø At least one time point t is 

instantiated
= This bounds each time point t

within an interval [lt,ut]

Controllable time point t in the future:
= t is alive if current time now∈[lt , ut]
= t is enabled if

Ø it’s alive
Ø for every precedence constraint t′< t,  t′ has occurred
Ø for every wait constraint ⟨te, α⟩,  te has occurred or α has expired

Dispatch(V,Ṽ,E,Ẽ )
= initialize the network
= while there are time points in V that haven’t 

yet been triggered, do
Ø update now
Ø update the time points in Ṽ that were 

triggered since the last iteration
Ø enabled ← {t∈ V | t hasn’t yet been 

triggered, and  lt ≤ now ≤ ut}
Ø for every t ∈ enabled such that now = ut

• trigger t
Ø arbitrarily choose other time points in 

enabled, and trigger them
Ø in the network, propagate values of 

triggered timepoints
• This changes [lt,ut] for each future 

timepoint t
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Example

= trigger t1, observe leave	finish
= enable and trigger t2, this enables t3, t4

= trigger t3 (start leave(r2,d2)) soon 
enough to allow enter(r1,d2) at time t5

= trigger t4 (start unstack(k,cʹ)) soon 
enough to allow stack(k,cʹ) at time t6

= rest of plan is linear: choose each ti
after the previous action ends

Dispatch(V,Ṽ,E,Ẽ )
= initialize the network
= while there are time points in V that haven’t 

yet been triggered, do
Ø update now
Ø update the time points in Ṽ that were 

triggered since the last iteration
Ø enabled ← {t∈ V | t hasn’t yet been 

triggered, and  lt ≤ now ≤ ut}
Ø for every t ∈ enabled such that now = ut

• trigger t
Ø arbitrarily choose other time points in 

enabled, and trigger them
Ø in the network, propagate values of 

triggered timepoints
• This changes [lt,ut] for each future 

timepoint t

navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1 t2

t3

t4

t5

t6

t7 t8 t9
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Example
= trigger t1 at time 0
= wait and observe t
= trigger t′ at any time from t to t+5
= trigger t3 at time t′ + 10

Ø t2∈ [t′ + 15, t′ + 20] 
Ø t4∈ [t3 + 5, t3 + 10]

= [t′ + 15, t′ + 20]
• so t4 – t3∈ [–5, 5]

= So all the constraints are satisfied

Dispatch(V,Ṽ,E,Ẽ )
= initialize the network
= while there are time points in V that haven’t 

yet been triggered, do
Ø update now
Ø update the time points in Ṽ that were 

triggered since the last iteration
Ø enabled ← {t∈ V | t hasn’t yet been 

triggered, and  lt ≤ now ≤ ut}
Ø for every t ∈ enabled such that now = ut

• trigger t
Ø arbitrarily choose other time points in 

enabled, and trigger them
Ø in the network, propagate values of 

triggered timepoints
• This changes [lt,ut] for each future 

timepoint t
t′

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring



65Deliberation	in	Planning	and	Acting

Deadline	Failures
= Suppose something makes it impossible to start an action on time
= Do one of the following:

Ø stop the delayed action, and look for new plan
Ø let the delayed action finish; try to repair the plan by resolving violated 

constraints at the STNU propagation level
• e.g., accommodate a delay in navigate by delaying the whole plan

Ø let the delayed action finish; try to repair the plan some other way

navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1 t2

t3

t4

t5

t6

t7 t8 t9
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Partial	Observability

= Tacit assumption: all occurrences of contingent events are observable
Ø Observation needed for dynamic controllability
Ø In general not all events are observable 

= POSTNU (Partially Observable STNU)

= Dynamically controllable?

Controllable
Timepoints Invisible

Contingent
Observable



tʹ

t3

t2

t4

[20,	25]

[25,	30]

[-5,	10]

t1 t [1,	2]
driving

cooking

working

t0

Observation	Actions

Controllable

Contingent
Invisible
observable
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Dynamic	Controllability

= A POSTNU is dynamically controllable if 
Ø there exists an execution strategy that chooses future controllable points 

to meet all the constraints, given the observation of past visible points
= Observable ≠ visible
= Observable means it will be known when observed
= It can be temporarily hidden

Controllable
Timepoints Invisible

Contingent Visible
Observable

Hidden
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Summary
= Timelines

Ø Temporal assertions (change, persistence), constraints
Ø Conflicts, consistency, security, causal support
Ø Consistency, security, causal support

= Chronicle: timelines + supported/unsupported info + tasks
= Actions represented by chronicles; preconditions ó causal support
= Planning problems

Ø three kinds of flaws and their resolvers:
• tasks, causal support, security

Ø partial plans, solution plans
= Planning: TemPlan

Ø Like PSP but with tasks, temporal assertions, temporal constraints
Ø Managing constraints: like CSPs
• Temporal constraints: STNs, PC algorithm (path consistency)

= Acting: dynamic controllability, STNUs, RAE	and eRAE, dispatching
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Relation	to	the	Book
= Ghallab, Nau, and Traverso (2016). 

Automated Planning and Acting.
Cambridge University Press

= Free downloads:
Ø Lecture slides, final manuscript
Ø http://www.laas.fr/planning

= Table of Contents
1. Introduction
2. Deterministic Models
3. Refinement Methods
4. Temporal Models
5. Nondeterministic Models
6. Probabilistic Models
7. Other Deliberation Functions

Automated Planning 
and Acting

Malik Ghallab, Dana Nau  
and Paolo Traverso

Any	questions?

Temporal Models


